当前位置: 首页 > 学科分类 > 数学

7年级数学上册试卷,七年级第一单元数学测试卷

  • 数学
  • 2024-11-16

7年级数学上册试卷?(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.七年级上册数学人教版期末试卷参考答案 一、选择题:本大题共有10小题,每小题2分,那么,7年级数学上册试卷?一起来了解一下吧。

初一数学试卷真题及答案

自信,是成功的一半;平淡,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。自信的你在我的祝福下,定会在七年级数学期末考中摘取桂冠,努力吧朋友。下面我给大家分享一些浙教版七年级数学上册期末试卷,大家快来跟我一起看看吧。

浙教版七年级数学上册期末试题

一、选择题(共15小题,每小题3分,满分45分)

1. |﹣2|等于()

A.﹣2 B.﹣ C.2 D.

2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()

A.1枚 B.2枚 C.3枚 D.任意枚

3.下列方程为一元一次方程的是()

A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2

4.下列各组数中,互为相反数的是()

A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1

5.如图,下列图形全部属于柱体的是()

A. B. C. D.

6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是()

A.x=0 B.x=3 C.x=﹣3 D.x=2

7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()

A.8cm B.84m C.8cm或4cm D.无法确定

8.一元一次方程 ﹣ =1,去分母后得()

A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6

9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:

①这种调查方式是抽样调查;

②6000名学生是总体;

③每名学生的数学成绩是个体;

④500名学生是总体的一个样本.

其中正确的判断有()

A.1个 B.2个 C.3个 D.4个

10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()

A.30° B.45° C.50° D.60°

11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()

A.69° B.111° C.141° D.159°

12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()

A.5 B.4 C.3 D.2

13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()

A.240元 B.250元 C.280元 D.300元

14.下列四种说法:

①因为AM=MB,所以M是AB中点;

②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;

③因为M是AB的中点,所以AM=MB= AB;

④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.

其中正确的是()

A.①③④ B.④ C.②③④ D.③④

15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()

A. B.

C. D.

二、填空题(共8小题,每小题3分,满分24分)

16.单项式﹣ xy2的系数是.

17.若x=2是方程8﹣2x=ax的解,则a=.

18.计算:15°37′+42°51′=.

19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).

20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD=cm.

21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.

22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.

23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.

三、解答题(共7小题,满分51分)

24.计算:

(1)﹣14﹣5×[2﹣(﹣3)2]

(2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.

25.解方程:

(1)2(3﹣y)=﹣4(y+5);

(2) = ;

(3) ﹣ =1;

(4)x﹣ =1﹣ .

26.列方程解应用题:

根据图中提供的信息,求出一个杯子的价格是多少元?

27.列方程解应用题:

已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.

(1)同向而行,开始时乙在前,经过多少小时甲追上乙?

(2)相向而行,经过多少小时两人相距40千米?

28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中共调查了多少名学生?

(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;

(3)求表示户外活动时间为2小时的扇形圆心角的度数.

29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.

30.已知关于x的方程 的解是x=2,其中a≠0且b≠0,求代数式 的值.

四、选做题(共3小题,不计入总分)

31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损)元.

32.|x+2|+|x﹣2|+|x﹣1|的最小值是.

33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.

浙教版七年级数学上册期末试卷参考答案

一、选择题(共15小题,每小题3分,满分45分)

1.|﹣2|等于()

A.﹣2 B.﹣ C.2 D.

【考点】绝对值.

【专题】探究型.

【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.

【解答】解:由于|﹣2|=2,故选C.

【点评】本题考查绝对值,解题的关键是明确绝对值的定义.

2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()

A.1枚 B.2枚 C.3枚 D.任意枚

【考点】直线的性质:两点确定一条直线.

【分析】根据直线的性质,两点确定一条直线解答.

【解答】解:∵两点确定一条直线,

∴至少需要2枚钉子.

故选B.

【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.

3.下列方程为一元一次方程的是()

A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2

【考点】一元一次方程的定义.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).

【解答】解:A、正确;

B、含有2个未知数,不是一元一次方程,选项错误;

C、最高次数是2次,不是一元一次方程,选项错误;

D、不是整式方程,不是一元一次方程,选项错误.

故选A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

4.下列各组数中,互为相反数的是()

A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1

【考点】相反数;绝对值;有理数的乘方.

【专题】计算题.

【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.

【解答】解:A、﹣(﹣1)=1,所以A选项错误;

B、(﹣1)2=1,所以B选项错误;

C、|﹣1|=1,所以C选项错误;

D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.

故选D.

【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.

5.如图,下列图形全部属于柱体的是()

A. B. C. D.

【考点】认识立体图形.

【专题】常规题型.

【分析】根据柱体的定义,结合图形即可作出判断.

【解答】解:A、左边的图形属于锥体,故本选项错误;

B、上面的图形是圆锥,属于锥体,故本选项错误;

C、三个图形都属于柱体,故本选项正确;

D、上面的图形不属于柱体,故本选项错误.

故选C.

【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.

6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是()

A.x=0 B.x=3 C.x=﹣3 D.x=2

【考点】一元一次方程的定义.

【专题】计算题.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.

【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,

则这个方程是3x=0,

解得:x=0.

故选:A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()

A.8cm B.84m C.8cm或4cm D.无法确定

【考点】两点间的距离.

【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.

【解答】解:如图1,当点B在线段AC上时,

∵AB=6cm,BC=2cm,

∴AC=6+2=8cm;

如图2,当点CB在线段AC外时,

∵AB=6cm,BC=2cm,

∴AC=6﹣2=4cm.

故选:C.

【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.

8.一元一次方程 ﹣ =1,去分母后得()

A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6

【考点】解一元一次方程.

【专题】计算题;一次方程(组)及应用.

【分析】方程两边乘以6去分母得到结果,即可作出判断.

【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,

故选D

【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.

9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:

①这种调查方式是抽样调查;

②6000名学生是总体;

③每名学生的数学成绩是个体;

④500名学生是总体的一个样本.

其中正确的判断有()

A.1个 B.2个 C.3个 D.4个

【考点】总体、个体、样本、样本容量;全面调查与抽样调查.

【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.

【解答】解:①这种调查方式是抽样调查故①正确;

②6000名学生的数学成绩是总体,故②错误;

③每名学生的数学成绩是个体,故③正确;

④500名学生是总体的一个样本,故④正确;

故选:C.

【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()

A.30° B.45° C.50° D.60°

【考点】角的计算.

【专题】计算题.

【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.

【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°

∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.

故选A.

【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.

11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()

A.69° B.111° C.141° D.159°

【考点】方向角.

【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.

【解答】解:由题意得:∠1=54°,∠2=15°,

∠3=90°﹣54°=36°,

∠AOB=36°+90°+15°=141°,

故选:C.

【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.

12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()

A.5 B.4 C.3 D.2

【考点】两点间的距离.

【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.

【解答】解:∵AB=10,M是AB中点,

∴BM= AB=5,

又∵NB=2,

∴MN=BM﹣BN=5﹣2=3.

故选C.

【点评】考查了两点间的距离,根据点M是AB中点先求出BM的长度是解本题的关键.

13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()

A.240元 B.250元 C.280元 D.300元

【考点】一元一次方程的应用.

【专题】应用题.

【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.

【解答】解:设这种商品每件的进价为x元,

由题意得:330×0.8﹣x=10%x,

解得:x=240,即这种商品每件的进价为240元.

故选:A.

【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.

14.下列四种说法:

①因为AM=MB,所以M是AB中点;

②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;

③因为M是AB的中点,所以AM=MB= AB;

④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.

其中正确的是()

A.①③④ B.④ C.②③④ D.③④

【考点】比较线段的长短.

【专题】应用题.

【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.

【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;

②如图,由AB=2AM,得AM=MB;故本选项正确;

③根据线段中点的定义判断,故本选项正确;

④根据线段中点的定义判断,故本选项正确;

故选C.

【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.

15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()

A. B.

C. D.

【考点】由实际问题抽象出一元一次方程.

【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.

【解答】解:设A港和B港相距x千米,可得方程:

= ﹣3.

故选A.

【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.

二、填空题(共8小题,每小题3分,满分24分)

16.单项式﹣ xy2的系数是﹣ .

【考点】单项式.

【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.

【解答】解:单项式﹣ xy2的系数是﹣ ,

故答案为:﹣ .

【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.

17.若x=2是方程8﹣2x=ax的解,则a=2.

【考点】一元一次方程的解.

【分析】把x=2,代入方程得到一个关于a的方程,即可求解.

七年级数学上册知识点归纳总结

一、选择题(每题3分,共36分)

1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )

A.1个 B.2个 C.3个 D.4个

2.下列命题中,正确的是( )

①相反数等于本身的数只有0; ②倒数等于本身的数只有1;

③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;

A.只有③ B. ①和② C.只有① D. ③和④

3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )

A.437℃ B.183℃ C.-437℃ D.-183℃

4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )

A.5.475*10^11 B. 5.475*10^10

C. 0.547*10^11 D. 5.475*10^8

5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )

A.这两个加数的符号都是正的 B.这两个加数的符号都是负的

C.这两个加数的符号不能相同 D.这两个加数的符号不能确定

7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )

A.1个 B.2个 C.3个 D.4个

8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。

初一上册数学试卷可打印

辛劳的付出必有丰厚回报,寒窗苦读为前途,望子成龙父母情。祝你七年级数学期末考试取得好成绩,期待你的成功!我整理了关于七年级数学上册期末试题人教版,希望对大家有帮助!

七年级数学上册期末试题

一、选择题:每小题3分,共20分

1.﹣8的相反数是()

A.﹣8 B.8 C. D.

2.下列计算结果,错误的是()

A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21

3.1500万(即15000000)这个数用科学记数法可表示为()

A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108

4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()

A.1 B.11 C.15 D.23

5.下列方程中是一元一次方程的是()

A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0

6.用一副三角板不可以拼出的角是()

A.105° B.75° C.85° D.15°

7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()

A.10cm B.2cm C.10cm或者2cm D.无法确定

8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()

A.120° B.105° C.100° D.90°

9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()

A.330元 B.210元 C.180元 D.150元

10.指出图中几何体截面的形状()

A. B. C. D.

二、填空题:每小题2分,共14分

11.化简:﹣[﹣(+5)]=.

12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是.

13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为.

14.同类项﹣ a3b,3a3b,﹣ a3b的和是.

15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=.

16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是.

17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为.

三、解答题

18.计算:

(1)|(﹣7)+(﹣2)|+(﹣3)

(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.

19.在数轴上表示下列各数,并用“<”号把它们连接起来.

1.5,0,﹣3,﹣(﹣5),﹣|﹣4|

20.解方程:

(1) x﹣1=2

(2) = .

21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.

22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;

(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.

23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.

24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.

七年级数学上册期末试题人教版参考答案

一、选择题:每小题3分,共20分

1.﹣8的相反数是()

A.﹣8 B.8 C. D.

【考点】相反数.

【分析】直接根据相反数的定义进行解答即可.

【解答】解:由相反数的定义可知,﹣8的相反数是﹣(﹣8)=8.

故选B.

【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.

2.下列计算结果,错误的是()

A.(﹣3)×(﹣4)×(﹣ )=﹣3 B.(﹣ )×(﹣8)×5=﹣8 C.(﹣6)×(﹣2)×(﹣1)=﹣12 D.(﹣3)×(﹣1)×(+7)=21

【考点】有理数的乘法.

【分析】根据结果的符号即可作出判断.

【解答】解:A、(﹣3)×(﹣4)×(﹣ )=﹣(3×4× )=﹣3,正确;

B、(﹣ )×(﹣8)×5中负因数的分数为偶数,积为正数,故B选项错误;

C、(﹣6)×(﹣2)×(﹣1)=﹣(6×2×1)=﹣12,正确;

D、(﹣3)×(﹣1)×(+7)=3×1×7=21,正确.

故其中错误的是B.

故选:B.

【点评】本题主要考查的是有理数的乘法,掌握有理数的乘法法则是解题的关键.

3.1500万(即15000000)这个数用科学记数法可表示为()

A.1.5×105 B.1.5×106 C.1.5×107 D.1.8×108

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.

【解答】解:15000000=1.5×107,

故选 C.

【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

4.若多项式2x2+3y+3的值为8,则多项式6x2+9y+8的值为()

A.1 B.11 C.15 D.23

【考点】代数式求值.

【专题】计算题;实数.

【分析】由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.

【解答】解:∵2x2+3y+3=8,

∴2x2+3y=5,

则原式=3(2x2+3y)+8=15+8=23,

故选D

【点评】此题考查了代数式求值,利用了整体代换的方法,熟练掌握运算法则是解本题的关键.

5.下列方程中是一元一次方程的是()

A.x+3=3﹣x B.x+3=y+2 C. =1 D.x2﹣1=0

【考点】一元一次方程的定义.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).

【解答】解:A、x+3=3﹣x是一元一次方程,故A正确;

B、x+3=y+2是二元一次方程,故B错误;

C、 =1是分式方程,故C错误;

D、x2﹣1=0是一元二次方程,故D错误;

故选:A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

6.用一副三角板不可以拼出的角是()

A.105° B.75° C.85° D.15°

【考点】角的计算.

【专题】计算题.

【分析】一副三角板各角的度数是30度,60度,45度,90度,因而把他们相加减就可以拼出的度数,据此得出选项.

【解答】解:已知一副三角板各角的度数是30度,60度,45度,90度,

可以拼出的度数就是用30度,60度,45度,90度相加减,

45°+60°=105°,

30°+45°=75°,

45°﹣30°=15°,

显然得不到85°.

故选:C.

【点评】此题考查的知识点是角的计算,关键明确用一副三角板可以拼出度数,就是求两个三角板的度数的和或差.

7.如果线段AB=6cm,BC=4cm,且线段A、B、C在同一直线上,那么A、C间的距离是()

A.10cm B.2cm C.10cm或者2cm D.无法确定

【考点】两点间的距离.

【专题】分类讨论.

【分析】讨论:当点C在线段AB的延长线上时,AC=AB+BC;当点C在线段AB的上时,AC=AB﹣BC,再把AB=6cm,BC=4cm代入计算可求得AC的长,即得到A、C间的距离.

【解答】解:当点C在线段AB的延长线上时,如图,

AC=AB+BC=6+4=10(cm),

即A、C间的距离为10cm;

当点C在线段AB的上时,如图,

AC=AB﹣BC=6﹣4=2(cm),

即A、C间的距离为2cm.

故A、C间的距离是10cm或者2cm.

故选C.

【点评】本题考查了两点间的距离:两点间的线段的长叫两点间的距离.也考查了分类讨论思想.

8.钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()

A.120° B.105° C.100° D.90°

【考点】钟面角.

【专题】计算题.

【分析】由于钟表上的时间为晚上8点,即时针指向8,分针指向12,这时时针和分针之间有4大格,根据钟面被分成12大格,每大格为30°即可得到它们的夹角.

【解答】解:∵钟表上的时间为晚上8点,即时针指向8,分针指向12,

∴这时时针和分针之间的夹角(小于平角)的度数=(12﹣8)×30°=120°.

故选A.

【点评】本题考查了钟面角的问题:钟面被分成12大格,每大格为30°.

9.商场将某种商品按标价的八折出售,仍可获利90元,若这种商品的标价为300元,则该商品的进价为()

A.330元 B.210元 C.180元 D.150元

【考点】一元一次方程的应用.

【分析】已知八折出售可获利90元,根据:进价=标价×8折﹣获利,可列方程求得该商品的进价.

【解答】解:设每件的进价为x元,由题意得:

300×80%﹣90=x

解得x=150.

故选D.

【点评】本题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×80%﹣获利,利用方程思想解答.

10.指出图中几何体截面的形状()

A. B. C. D.

【考点】截一个几何体.

【分析】用平面取截一个圆锥体,横着截时截面是椭圆或圆(截面与上下底平行).

【解答】解:当截面平行于圆锥底面截取圆锥时得到截面图形是圆.

故选B.

【点评】本题考查几何体的截面,关键要理解面与面相交得到线

二、填空题:每小题2分,共14分

11.化简:﹣[﹣(+5)]=5.

【考点】相反数.

【分析】根据多重符号化简的法则化简.

【解答】解:﹣[﹣(+5)]=+5=5.

【点评】本题考查多重符号的化简,一般地,式子中含有奇数个“﹣”时,结果为负;式子中含有偶数个“﹣”时,结果为正.

12.已知|x+1|+(x﹣y+3)2=0,那么(x+y)2的值是1.

【考点】非负数的性质:偶次方;非负数的性质:绝对值.

【分析】根据非负数的性质可求出x、y的值,再将它们代入(x+y)2中求解即可.

【解答】解:∵|x+1|+(x﹣y+3)2=0,

∴x+1=0,x﹣y+3=0;

x=﹣1,y=2;

则(x+y)2=(﹣1+2)2=1.

故答案为:1.

【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.

13.小虎在写作业时不小心将墨水滴在数轴上,根据图中的数值,判断墨迹盖住的整数之和为﹣14.

【考点】数轴.

【分析】根据题意和数轴可以得到被墨迹盖住的部分之间的整数,从而可求得墨迹盖住的整数之和.

【解答】解:根据题意和数轴可得,

被墨迹盖住的整数之和是:(﹣6)+(﹣5)+(﹣4)+(﹣3)+(﹣2)+1+2+3=﹣14,

故答案为:﹣14.

【点评】本题考查数轴,解题的关键是明确题意,利用数形结合的思想写出被遮住部分之间的所有整数.

14.同类项﹣ a3b,3a3b,﹣ a3b的和是 a3b.

【考点】合并同类项.

【分析】根据合并同类项系数相加字母及指数不变,可得答案.

【解答】解:﹣ a3b+3a3b+﹣ a3b= a3b,

﹣ a3b,3a3b,﹣ a3b的和是 a3b,

故答案为: a3b.

【点评】本题考查了合并同类项,合并同类项系数相加字母及指数不变是解题关键.

15.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n=﹣10.

【考点】解一元一次方程.

【专题】计算题;新定义;一次方程(组)及应用.

【分析】已知等式利用题中的新定义化简,求出解即可得到n的值.

【解答】解:利用题中的新定义化简得:2n+2﹣n=﹣8,

移项合并得:n=﹣10,

故答案为:﹣10

【点评】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.

16.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.

【考点】角平分线的定义.

【分析】根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.

【解答】解:∵EF是∠BED的角平分线,∠DEF=70°,

∴∠DEB=2∠DEF=2×70°=140°,

∴∠AED=180°﹣∠DEB=180°﹣140°=40°.

故答案为:40°.

【点评】本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.

17.观察下列单项式的规律:a、﹣2a2、3a3、﹣4a4、…第2016个单项式为﹣2016a2016.

【考点】单项式.

【专题】规律型.

【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.

【解答】解:第2016个单项式为:﹣2016a2016,

故答案为:﹣2016a2016.

【点评】本题主要考查了单项式的有关知识,在解题时要能通过观察得出规律是本题的关键.

三、解答题

18.计算:

(1)|(﹣7)+(﹣2)|+(﹣3)

(2)42+3×(﹣1)3+(﹣2)÷(﹣ )2.

【考点】有理数的混合运算.

【分析】(1)先算绝对值符号里面的,再算加减即可;

(2)先算乘方,再算乘除,最后算加减即可.

【解答】解:(1)原式=9﹣3

=6;

(2)原式=16+3×(﹣1)﹣2×9

=16﹣3﹣18

=﹣5.

【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.

19.在数轴上表示下列各数,并用“<”号把它们连接起来.

1.5,0,﹣3,﹣(﹣5),﹣|﹣4|

【考点】有理数大小比较;数轴.

【分析】把各数在数轴上表示出来,从左到右用“<”号连接起来即可.

【解答】解:如图所示,

故﹣|﹣4|<﹣3<0<1.5<﹣(﹣5).

【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.

20.解方程:

(1) x﹣1=2

(2) = .

【考点】解一元一次方程.

【专题】计算题;一次方程(组)及应用.

【分析】(1)方程去分母,移项合并,把x系数化为1,即可求出解;

(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

【解答】解:(1)去分母得:x﹣2=4,

解得:x=6;

(2)去分母得:3(3y﹣1)﹣12=2(5y﹣7),

去括号得:9y﹣3﹣12=10y﹣14,

移项合并得:y=﹣1.

【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

21.先化简,再求值:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3),其中x=﹣3,y=﹣2.

【考点】整式的加减—化简求值.

【分析】首先化简,进而合并同类项进而求出代数式的值.

【解答】解:2(x3﹣2y2)﹣(x﹣2y)﹣(x﹣3y+2x3)

=2x3﹣4y2﹣x+2y﹣x+3y﹣2x3,

=4y2﹣2x+5y,

∵x=﹣3,y=﹣2,

∴原式=﹣4y2﹣2x+5y=﹣4×(﹣2)2﹣2×(﹣3)+5×(﹣2)=﹣20.

【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.

22.如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.

(1)求∠BOD的度数;

(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.

【考点】角的计算;角平分线的定义.

【分析】(1)根据角平分线的定义,邻补角的定义,可得答案;

(2)根据角的和差,可得答案.

【解答】解:(1)由角平分线的定义,得

∠AOD=∠COD= ∠AOC= ×50°=25°.

由邻补角的定义,得

∠BOD=180°﹣∠AOD=180°﹣25°=155°;

(2)∠BOE=∠COE,理由如下:

由角的和差,得

∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,

∠COE=∠DOE﹣∠COD=90°﹣25°=65°,

则∠BOE=∠COE.

【点评】本题考查了角的计算,利用角的和差是解题关键.

23.如图,已知线段AB和CD的公共部分BD= AB= CD,线段AB、CD的中点E、F之间距离是10cm,求AB,CD的长.

【考点】两点间的距离.

【专题】方程思想.

【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE和CF,再根据EF=AC﹣AE﹣CF=2.5x,且E、F之间距离是10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.

【解答】解:设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.

∵点E、点F分别为AB、CD的中点,∴AE= AB=1.5xcm,CF= CD=2xcm.

∴EF=AC﹣AE﹣CF=6x﹣1.5x﹣2x=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.

∴AB=12cm,CD=16cm.

【点评】本题主要考查了两点间的距离和中点的定义,注意运用数形结合思想和方程思想.

24.某明星演唱会组委会公布的门票价格是:一等席600元;二等席400元;三等席250元.某服装公司在促销活动中组织获前三等奖的36名顾客去观看比赛,计划买两种门票10050元,你能设计几种购买价方案供该公司选择?并说明理由.

【考点】一元一次方程的应用.

【分析】可分为购买一等席和二等席;一等席和三等席;二等席和三等席位三种情况,然后根据门票总数为36张,总费用为10050元,列方程求解即可.

【解答】解:①设购买一等席x张,二等席(36﹣x)张.

根据题意得:600x+400(36﹣x)=10050.

解得:x=﹣21.75(不合题意).

②设购买一等席x张,三等席(36﹣x)张.

根据题意得:600x+250(36﹣x)=10050.

解得:x=3.

∴可购买一等席3张,二等席位33张.

③设购买二等席x张,三等席(36﹣x)张.

根据题意得:400x+250(36﹣x)=10050.

解得:x=7.

∴可购买二等席7张,二等席位29张.

答;共有2中方案可供选择,方案①可购买一等席3张,二等席位33张;方案②可购买二等席7张,二等席位29张.

【点评】本题主要考查的是一元一次方程的应用,根据门票的总张数为36张,总票价为10050元分类列出方程是解题的关键.

七年级上册数学试卷电子版免费

2008-2009学年度第一学期七年级期末数学试卷

(考试时间为100分钟,试卷满分为100分)

班级__________ 学号___________ 姓名___________ 分数____________

一、选择题(每题3分,共36分)

1.在下列各数:-(-2) ,-(-2^2) ,-2的绝对值的相反数 ,(-2)^2 , 中,负数的个数为( )

A.1个 B.2个 C.3个 D.4个

2.下列命题中,正确的是( )

①相反数等于本身的数只有0; ②倒数等于本身的数只有1;

③平方等于本身的数有±1和0; ④绝对值等于本身的数只有0和1;

A.只有③ B. ①和② C.只有① D. ③和④

3.2007年10月24日,搭截着我国首颗探月卫星“嫦娥一号”的“长征三号甲”运载火箭在西昌卫星发射中心三号塔架发射成功,技术人员对“嫦娥一号”进行了月球环境适应性设计,这是因为月球表面的昼夜温差可达310℃,白天阳光垂直照射的地方可达127℃,那么夜晚的温度降至( )

A.437℃ B.183℃ C.-437℃ D.-183℃

4.据测我国每天因土地沙漠化造成的经济损失约1.5亿元,用科学记数法表示我国一年(按365天计算)因土地沙漠化造成的总经济损失( )

A.5.475*10^11 B. 5.475*10^10

C. 0.547*10^11 D. 5.475*10^8

5.两数相加,其和小于其中一个加数而大于另一个加数,那么( )

A.这两个加数的符号都是正的 B.这两个加数的符号都是负的

C.这两个加数的符号不能相同 D.这两个加数的符号不能确定

7.代数式5abc , -7x^2+1,-2x/5 ,1/3 ,(2x-3)/5 中,单项式共有( )

A.1个 B.2个 C.3个 D.4个

8.小刚做了一道数学题:“已知两个多项式为 A,B ,求A+B 的值,”他误将“ A+B”看成了“ A-B”,结果求出的答案是x-y ,若已知 B=3x-2y,那么原来A+B的值应该是( )。

初一上册数学单元测试卷

苏教版七年级(上)数学期末试卷(满分120分)

姓名___________ 得分______

一. 单项选择题 (每小题2分, 共20分)

1. 的倒数的相反数的绝对值是

A. B. -C. 3D. -3

2. 计算(-3)2-(-3)3-22+(-2)2的结果是( )

A. 36B. -18C. -36D. 18

3. 绝对值不大于4的整数的积是

A. 16B. 0C. 576D. -1

4. 关于x的方程ax+3=4x+1的解为正整数, 则整数a的值为( )

A. 2B. 3C. 1或2D. 2或3

5. 某商店有两个进价不同的计算器都卖了64元, 其中一个盈利60%, 另一个亏损20%, 在这次买卖中, 这家商店( )

A. 不赔不赚B. 赚了32元C. 赔了8元D. 赚了8元

6. 设x表示两位数, y表示三位数, 如果把x放在y的左边组成一个五位数, 可表示为( )

A. xyB. 1000x+yC. x+yD. 100x+y

7. 把一个周角n等分, 每份是180, 则n等于( )

A. 18B. 19C. 20D. 21

8. 两个角的大小之比是7:3, 它们的差是720, 则这两个角的关系是( )

A. 相等B. 互补C. 互余D. 无法确定

9. 下图右边四个图形中是左边展形图的立体图的是( )

10. 设 "、△、□" 表示三种不同的物体, 现用天平称了两次, 情况如图所示, 那么这三种物体质量大小从大到小的顺序排列正确的是 B( )

A. □△B. □△C. △□D. △□

二. 填空题. (每小题2分, 共20分)

11. 如图所示, OA、OB是两条射线, C是OA上一点, D、E是OB上两点, 则图中共有_________条线段, 它们分别是______________________________; 图中共有______条射线, 它们分别是_____________________________.

12. 如图, 已知A、B、C、D是同一直线上的四点, 看图填空: AC=_______+BC,

BD=AD-________, AC<________.

13. 在图中, 共有k个三角形, 则k+2001=_______________.

14. 3.760=_______度_______分________秒; 2203224"=________________度.

15. 将图中所示的纸片沿虚线折叠起来的几何体是______________. 且1的对面是_________, 2的对面是___________, 3的对面是____________.

16. 在等式y=kx+b中,当x=0时,y=2;当x=3时,y=3,则=______.

17. 若x=-1是关于x的方程ax2-bx+c=0的解,

则=___________, =____________.

18. 方程=1-去分母后得___________________.

19. 观察方程(x-1)(x+2)=0的解是_______________________________.

20. 将1299万保留三位有效数字为______________________.

三. 计算题. (每小题4分, 共16分)

21. 22. -1100 -(1-0.5)××[3-(-3)2]

23. -32+(-3)2+(-5)2×(-)-0.32÷|-0.9|24. (-2×5)3-(-1)×(-)2-(-)2

四. 解方程. (每小题4分, 共12分)

25. 5(x+8)-5=6(2x-7) 26.27.五. 解答题.

28. (3分)一个正方体6个面分别写着1、2、3、4、5、6, 根据下列摆放的三种情况, 那么每个数对面上的数是几?

29. (5分)如图, 数轴上的三点A、B、C分别表示有理数a、b、c, 化简|a-b|-|a+c|+|b-c|.

30. (6分)若a、b互为相反数, c是最小的非负数, d是最小的正整数, 求(a+b)d+d-c的值.

31. (6分)如图所示, 直线AB、CD相交于O, OE平分∠AOD, ∠FOC=900, ∠1=400, 求∠2和∠3的度数.

32. (6分)一项工程由甲单独做需12天完成, 由乙单独做需8天完成, 若两人合作3天后, 剩下部分由乙单独完成, 乙还需做多少天?

33. (6分) 一份数学竞赛试卷有20道选择题,规定做对一题得5分,一题不做或做错■■■■( 此处因印刷原因看不清楚).文文做对了16道,但只得了74分,这是为什么?

参考答案

一. 选择题

1. C 2. A 3. B 4. D 5. D 6. B 7. C 8. B 9. D [点拨: 注意小正方形成对角线的形式] 10. B

二. 填空题

11. 6, CO, CD, CE, OD, OE, DE; 5, OC, CA, OD, DE, EB

12. AB; AB; AD13. 200714. 3, 45, 36; 22.54

15. 正方体, 4, 5, 616. 1617. -1, -1

18. 4x=6-(1-x)

19. x=1或x=-2

20. 1.30×107

三. 计算题21. 622. 解原式=

23. 解析: "+" "-"号把式子分成四部分, 分别计算再加减.

解原式=-9+9+25×()-0.09÷0.9=-9+9+(-20)-0.1=-20-0.1=-20.1

24. -1099

四. 解方程25. x=1126. x=-927. y=五. 解答题

28. 1对4, 2对5, 3对6

29. 原式=b-a+a+c+c-b=2c

30. a+b=0, c=0, d=1(a+b)d+d-c=1

31. 解: ∠1=400, ∠BOD=900-400=500

∠AOD=1800-500=1300,

∠AOC与∠AOD互补,

∴∠3=500, ∠2=∠AOD=650

32. 解: 设乙还需做x天, 由题意得, x=3

六. 附加题

33. 6.设一题不做或做错得x分,16×5+(20-16)x=74,x=-4

以上就是7年级数学上册试卷的全部内容,26.(12分)“新春超市”在2015年1~3月平均每月盈利20万元,4~6月平均每月亏损15万元,7~10月平均每月盈利17万元,11~12月平均每月亏损23万元.问“新春超市”2015年总的盈亏情况如何?27.(14分)一名 足球 守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数。

猜你喜欢