高中数学圆的方程?高中数学圆的方程为x2+y2+Dx+Ey+F=0 (D2+E2-4F>0)。圆的性质:1、圆是定点的距离等于定长的点的集合 2、圆的内部可以看作是圆心的距离小于半径的点的集合 3、圆的外部可以看作是圆心的距离大于半径的点的集合 4、同圆或等圆的半径相等。圆是一种几何图形,那么,高中数学圆的方程?一起来了解一下吧。
因,圆x^2+y^2+8x-10y+41=r^2与x轴相切
即,圆(x+4)^2+(y-5)^2=r^2与x轴相切
所以,圆的圆心是(-4,5),圆的半径r=5
所以圆的方程为,(x+4)^2+(y-5)^2=5^2
圆与y轴相截,则令x=0
所以,4^2+(y-5)^2=5^2
(y-5)^2=9
y=8,或y=2
8-2=6即此圆截y轴所得的弦长是6
周长:C=2πr (r半径)
面积:S=πr²
半圆周长:C=πr+2r
半圆面积:S=πr²/2
扩展资料:
圆形面积
编辑
圆的半径:r
直径:d
圆周率:π(数值为3.1415926至3.1415927之间……无限不循环小数),通常采用3.14作为π的数值
圆面积:
圆面积=圆周率×半径×半径
半圆的面积:S半圆=(πr2)÷2
半圆的面积=圆周率×半径×半径÷2
圆环面积: S大圆-S小圆=π(R2-r2)(R为大圆半径,r为小圆半径)
圆环面积=外大圆面积-内小圆面积
圆的周长:
或
圆的周长=直径×圆周率
半圆的周长:
或者
半圆周长=圆周率×半径+直径
(一)圆的标准方程
1.圆的定义:平面内到一定点的距离等于定长的点的轨迹叫做圆.定点叫圆的圆心,定长叫做圆的半径.
2.圆的标准方程:已知圆心为(a,b),半径为r,则圆的方程为(x-a)2+(y-b)2=r2.
说明:
(1)上式称为圆的标准方程.
(2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2.
(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2----圆心为(a,b),半径为r.
(4)确定圆的条件
由圆的标准方程知有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定.因此,确定圆的方程,需三个独立的条件,其中圆心是圆的定位条件,半径是圆的定型条件.
(5)点与圆的位置关系的判定
若点M(x1,y1)在圆外,则点到圆心的距离大于圆的半径,即(x-a)2+(y-b)2>r2
;
若点M(x1,y1)在圆内,则点到圆心的距离小于圆的半径,即(x-a)2+(y-b)2<r2
;
(二)圆的一般方程
任何一个圆的方程都可以写成下面的形式:
x2+y2+Dx+Ey+F=0①
将①配方得:
②(x+D/2)2+(y+E/2)2=D2+E2-4F/4
当时,方程①表示以(-D/2,-E/2)为圆心,以为半径的圆;
当时,方程①只有实数解,所以表示一个点(-D/2,-E/2);
当时,方程①没有实数解,因此它不表示任何图形.
故当时,方程①表示一个圆,方程①叫做圆的一般方程.
圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:
(1)和的系数相同,且不等于0;
(2)没有xy这样的二次项.
以上两点是二元二次方程表示圆的必要条件,但不是充分条件.
要求出圆的一般方程,只要求出三个系数D、E、F就可以了.
(三)直线和圆的位置关系
1.直线与圆的位置关系
研究直线与圆的位置关系有两种方法:
(l)几何法:令圆心到直线的距离为d,圆的半径为r.
d>r直线与圆相离;d=r直线与圆相切;0≤d
解:可设圆心C(t,-2t).由题设得√[(t-2)²+(2t-1)²]=|3t-1|/√2=R.解得t=1,或t=9.
当t=1时,圆心(1,-2),半径R=√2.圆的方程为(x-1)²+(y+2)²=2.
当t=9时,圆心(9,-18),半径R=13√2.圆的方程为(x-9)²+(y+18)²=338
周长:C=2πr (r半径)
2.面积:S=πr²
3.半圆周长:C=πr+2r
4.半圆面积:S=πr²/2
5.圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2.
6.圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0.和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2.
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r.
8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r.
扩展资料
圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。
以上就是高中数学圆的方程的全部内容,(1)上式称为圆的标准方程.(2)如果圆心在坐标原点,这时a=0,b=0,圆的方程就是x2+y2=r2.(3)圆的标准方程显示了圆心为(a,b),半径为r这一几何性质,即(x-a)2+(y-b)2=r2---圆心为(a,b),半径为r.(4)确定圆的条件 由圆的标准方程知有三个参数a、b、r,只要求出a、。