数学十字相乘?1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。4、那么,数学十字相乘?一起来了解一下吧。
十字相乘法概念:
十字相乘法能把某些二次三项式分解因式。这种方法的关键是把二次项a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项b,那么可以直接写成结果: ,在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例题
例1 把2x2-7x+3分解因式.
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下解,再分解常数项,分
别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=1×3==(-3)×(-1)=(-1)×(-3).
用画十字交叉线方法表示下列四种情况:
1 1
�
2 3
1×3+2×1
=5
1 3
�
2 1
1×1+2×3
=7
1 -1
�
2 -3
1×(-3)+2×(-1)
=-5
1 -3
�
2 -1
1×(-1)+2×(-3)
=-7
经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数-7.
解 2x2-7x+3=(x-3)(2x-1).
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2,排列如下:
a1 c1
�
a2 c2
a1a2+a2c1
按斜线交叉相乘,再相加,得到a1a2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2).
像这种借助画十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常
叫做十字相乘法.
例2 把6x2-7x-5分解因式.
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
�
3 -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式.
解 6x2-7x-5=(2x+1)(3x-5).
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式.
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数.例如把x2+2x-15分解因式,十字相乘法是
1 -3
�
1 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5).
例3 把5x2+6xy-8y2分解因式.
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
�
5 -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y).
指出:原式分解为两个关于x,y的一次式.
例4 把(x-y)(2x-2y-3)-2分解因式.
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解.
问:两上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) 2-3(x-y)-2
=[(x-y)-2][2(x-y)+1]
=(x-y-2)(2x-2y+1).
1 -2
�
2 +1
1×1+2×(-2)=-3
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法.
例3:x2+2x-15
分析:常数项(-15)<0,可分解成异号两数的积,可分解为(-1)(15),或(1)(-15)或(3)
(-5)或(-3)(5),其中只有(-3)(5)中-3和5的和为2。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。
例如:
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为 1-2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解: 因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
解: 因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
十字相乘法是一种因式分解方法。
十字相乘法是一种数学方法,通常用于分解多项式中的某些项,特别是在处理二次多项式时更为常见。这种方法的本质是通过将多项式中的项进行分组和组合,以找出可以进一步分解的公因子。该方法通过将多项式拆分为两个因式来实现因式分解。具体来说,它会以特定的方式排列多项式中的项,从而便于识别和使用公因子。
十字相乘法基于数学中的因式分解原理。在处理形如ax²+bx+c的多项式时,如果系数满足一定条件,可以通过十字相乘法将其分解为两个一次多项式的乘积。这种方法的关键在于找到合适的组合方式,使得多项式中的项能够形成类似“十字交叉”的形式,从而便于提取公因子。
使用十字相乘法时,需要注意观察和尝试不同的组合方式,以找到最有效的分解方式。这种方法需要一定的数学技巧和直觉,但通过练习和熟悉,可以更加熟练地掌握。十字相乘法在数学中具有重要的应用价值,不仅用于简化计算,还用于解决更复杂的数学问题。
总之,十字相乘法是一种用于因式分解的数学技巧,尤其适用于二次多项式的分解。通过观察和组合多项式中的项,以形成十字交叉的形式,从而提取公因子并简化计算。这种方法需要一定的练习和熟悉,但掌握后可以有效应用于数学计算和问题解决中。
数字十字相乘公式是:x²+(a+b)x+ab=(x+a)(x+b)
扩展资料:
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。
十字相乘法也能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。对于像ax²+bx+c=(a₁x+c₁)(a₂x+c₂)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a₁,a₂的积,把常数项c分解成两个因数c₁,c₂的积,并使a₁c₂+a₂c₁正好等于一次项的系数b。那么可以直接写成结果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数为1时,可表达为x²+(a+b)x+ab=(x+a)(x+b);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
对于形如ax²+bx+c的多项式,在判定它能否使用十字相乘法分解因式时,可以使用Δ=b²-4ac进行判定。
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运算量不大,不容易出错。
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例:
1)、
用十字相乘法解一些简单常见的题目
例1把:
\,\!分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
解:因为
1
-2
1
╳
6
所以m^2+4m-12=(m-2)(m+6)
例2把5x^2;+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题
解:
因为
1
2
5
╳
-4
所以5x^2;+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。
以上就是数学十字相乘的全部内容,十字相乘法是一种用于分解因式的数学方法,适用于系数不为1的二次三项式。通过这种方法,可以将一个二次三项式拆分成两个一次因式的乘积,从而简化解题过程。一、系数不为一的十字相乘法的乘积具体步骤 1、将二次项系数分解质因数。对于二次项2x^2 + 3x + 5,将2分解为2×1。2、。