中考数学压轴题120道?第1题 夯实双基“步步高”,强化条件是“路标”第2题 “弓形问题”再相逢,“殊途同归”快突破 第3题 “模式识别”记心头,看似“并列”实“递进”第4题 “准线”“焦点”频现身,“居高临下”明“结构”第5题 莫为“浮云”遮望眼,那么,中考数学压轴题120道?一起来了解一下吧。
我为您提供以下10道图形移动的数学练习题,包括求阴影面积和最大最小值等方面的考查内容。难易度均匀,供您参考练习。
1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。
2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。
3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。
4. 把一个正方形沿对角线方向移动,它最后完全重合的时候恰好覆盖了一个面积为S的等腰三角形,求三角形面积S。
5. 把一个正方形沿着y轴正方向移动,移动m个单位的时候与另外一个正方形刚好重合,求另外一个正方形的边长。
6. 一个矩形沿x轴正方向移动,移动到另外一个矩形的正上方还有b个单位,求两个矩形的阴影面积比值。
7. 把一个半圆形沿y轴正方向移动,移动到正方形的中心时,求正方形面积和半圆形面积的阴影面积比值。
8. 把一个梯形沿y轴正方向移动,移动到一个与梯形相似的大梯形上面靠着底边的位置,求阴影的面积比值。
9. 把一个正三角形沿着x轴正方向移动,相邻两次的位移满足一个等差数列,第一次移动2个单位,第三次移动8个单位,求正三角形的边长。
10. 一个椭圆形沿y轴正方向移动,移动到一个长方形上方恰好横跨长方形的两个端点,求已经移动了多少个单位。
2023年无锡中考数学考试过后,考生们纷纷感叹题难!
老贺整理了网络上关于压轴题的讨论,以供同学们复习时参考与练习。
无锡中考数学压轴题第9题,题目内容如下:
无锡中考数学压轴题第18题,具体内容如下:
无锡中考数学压轴题第27题,内容如下:
无锡中考数学压轴题第28题,具体表述如下:

31、(辽宁沈阳卷)如图,在平面直角坐标系中,直线 分别与 轴, 轴交于点 ,点 .
(1)以 为一边在第一象限内作等边 及 的外接圆 (用尺规作图,不要求写作法,但要保留作图痕迹);
(2)若 与 轴的另一个交点为点 ,求 , , , 四点的坐标;
(3)求经过 , , 三点的抛物线的解析式,并判断在抛物线上是否存在点 ,使 的面积等于 的面积?若存在,请直接写出所有符合条件的点 的坐标;若不存在,请说明理由.
[解] (1)如图,正确作出图形,保留作图痕迹
(2)由直线 ,求得点 的坐标为 ,点 的坐标为
在 中, ,
,
是等边三角形
,
点 的坐标为 ,连结
是等边三角形
直线 是 的切线
点 的坐标为
(3)设经过 , , 三点的抛物线的解析式是
把 代入上式得
抛物线的解析式是
存在点 ,使 的面积等于 的面积
点 的坐标分别为 , .
[点评]本题是一道综合性很强的压轴题,主要考查二次函数、一次函数、圆、几何作图等大量知识,第3小题是比较常规的结论存在性问题,运用方程思想和数形结合思想可解决。
32、(山东滨州卷)已知:抛物线 与 轴相交于 两点,且 .
(Ⅰ)若 ,且 为正整数,求抛物线 的解析式;
(Ⅱ)若 ,求 的取值范围;
(Ⅲ)试判断是否存在 ,使经过点 和点 的圆与 轴相切于点 ,若存在,求出 的值;若不存在,试说明理由;
(Ⅳ)若直线 过点 ,与(Ⅰ)中的抛物线 相交于 两点,且使 ,求直线 的解析式.
[解] (Ⅰ)解法一:由题意得,.
解得, .
为正整数, . .
解法二:由题意知,当 时, .
(以下同解法一)
解法三: ,
.
又 .
.
(以下同解法一.)
解法四:令 ,即 ,
.
(以下同解法三.)
(Ⅱ)解法一: .
,即 .
,
.
解得 .
的取值范围是 .
解法二:由题意知,当 时,
.
解得: .
的取值范围是 .
解法三:由(Ⅰ)的解法三、四知, .
,
.
的取值范围是 .
(Ⅲ)存在.
解法一:因为过 两点的圆与 轴相切于点 ,所以 两点在 轴的同侧,
.
由切割线定理知, ,
即 . ,
.
解法二:连接 .圆心所在直线 ,
设直线 与 轴交于点 ,圆心为 ,
则 .
,
.
在 中,
.
即 .
解得 .
(Ⅳ)设 ,则 .
过 分别向 轴引垂线,垂足分别为 .
则 .
所以由平行线分线段成比例定理知, .
因此, ,即 .
过 分别向 轴引垂线,垂足分别为 ,
则 .所以 . .
. .
,或 .
当 时,点 . 直线 过 ,
解得
当 时,点 . 直线 过 ,
解得
故所求直线 的解析式为: ,或 .
[点评]本题对学生有一定的能力要求,涉及了初中数学的大部分重点章节的重点知识,是一道选拔功能卓越的好题。

中考考试马上就要开始了,我就为大家整理一下中考数学必做的36道压轴题有哪些。
第1题 夯实双基“步步高”,强化条件是“路标”
第2题 “弓形问题”再相逢,“殊途同归”快突破
第3题 “模式识别”记心头,看似“并列”实“递进”
第4题 “准线”“焦点”频现身,“居高临下”明“结构”
第5题 莫为“浮云”遮望眼,“洞幽察微”探指向
中考数学压轴题做题技巧
构造定理所需的图形或基本图形
在解决问题的过程中,有时添加辅助线是必不可少的。对于北京中考来说,只有一道很简单的证明题是可以不用添加辅助线的,其余的全都涉及到辅助线的添加问题。中考对学生添线的要求还是挺高的,但添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。
线段、角的计算与证明问题
中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中难题了。 对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。
如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?
22.已知:如图,M是 的中点,过点M的弦MN交AB于点C,设⊙O的半径为4cm,MN=4 cm.
(1)求圆心O到弦MN的距离;
(2)求∠ACM的度数.
得分 评卷人
(23~24题,第23题7分,第24题8分,共15分)
23.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.
(1)求A市投资“改水工程”的年平均增长率;
(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?
24.已知点A(-2,-c)向右平移8个单位得到点 ,A与 两点均在抛物线 上,且这条抛物线与 轴的交点的纵坐标为-6,求这条抛物线的顶点坐标.
得分 评卷人
(25~26题,第25题10分,第26题12分,共22分)
25.随着我国人民生活水平和质量的提高,百岁寿星日益增多.某市是中国的长寿之乡,截至2008年2月底,该市五个地区的100周岁以上的老人分布如下表(单位:人):
地区
性别 一 二 三 四 五
男性 21 30 38 42 20
女性 39 50 73 70 37
根据表格中的数据得到条形图如下:
解答下列问题:
(1)请把统计图中地区二和地区四中缺失的数据、图形补充完整;
(2)填空:该市五个地区100周岁以上老人中,男性人数的极差是 人,女性人数的中位数是 人;
(3)预计2015年该市100周岁以上的老人将比2008年2月的统计数增加100人,请你估算2015年地区一增加100周岁以上的男性老人多少人?
26.如图,四边形ABCD中,AD=CD,∠DAB=∠ACB=90°,过点D作DE⊥AC,垂足为F,DE与AB相交于点E.
(1)求证:AB•AF=CB•CD;
(2)已知AB=15 cm,BC=9 cm,P是射线DE上的动点.设DP=x cm( ),四边形BCDP的面积为y cm2.
①求y关于x的函数关系式;
②当x为何值时,△PBC的周长最小,并求出此时y的值.
得分 评卷人
(第27题10分)
27.在一次数学探究性学习活动中,某学习小组要制作一个圆锥体模型,操作规则是:在一块边长为16cm的正方形纸片上剪出一个扇形和一个圆,使得扇形围成圆锥的侧面时,圆恰好是该圆锥的底面.他们首先设计了如图所示的方案一,发现这种方案不可行,于是他们调整了扇形和圆的半径,设计了如图所示的方案二.(两个方案的图中,圆与正方形相邻两边及扇形的弧均相切.方案一中扇形的弧与正方形的两边相切)
(1)请说明方案一不可行的理由;
(2)判断方案二是否可行?若可行,请确定圆锥的母线长及其底面圆半径;若不可行,请说明理由.
好像没图

以上就是中考数学压轴题120道的全部内容,1. 把一个长方形沿x轴正方向移动m个单位,求移动前后阴影的面积差。2. 一个小正方体沿着x轴正方向移动,它的一面在x轴上翻转,求翻转前后阴影的面积比值。3. 一个方形沿着y轴正方向移动,移动到一个圆的周围,求圆和方形的阴影面积比值。4. 把一个正方形沿对角线方向移动,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。