数学又叫什么?.那么,数学又叫什么?一起来了解一下吧。
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好.
学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
在学习过程中,一定要:多听(听课),多记(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.
其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.
每天要保证足够的睡眠(8小时),保证学习效率.
安排适当的自由时间用于与家人和朋友的交往及其他活动.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.
数学——数的学问。算术——计算技术。两者并不相同。
古代中国的数学侧重计算,称呼数学为算术恰如其分。
在《九章算术》中,讨论的都是各种各样的计算问题。
虽然有很多公式的推导,但是明显并不是重点讨论内容。
数学是什么?给数学下定义是一个困难的问题。任何定义都遇到同样的困难。例如,狗是人人都熟悉的动物,你试着给它下个定义,看看如何?
数学是一棵参天大树。它的根深深地扎在我们的现实世界。它有两个主干,一曰形—几何,一曰数—代数。
几何:空间形式的科学,视觉思维占主导,培养直觉能力,培养洞察力;
代数:数量关系的科学,有序思维占主导,培养逻辑推理能力。
如果只研究数与形,那是静态的,属于常量数学的范围。分析来源于变化这一概念。只研究数与形是不够的,必须研究大小与形状是如何改变的。这就产生了微积分(17世纪)。它的延伸是,无穷级数,微分方程,微分几何等。
那么,什么是数学呢?19世纪恩格斯给数学下了这样的定义:
“数学是关于空间形式和数量关系的科学。”
2 数学的内容
大致说来,数学分为初等数学与高等数学两大部分。
初等数学中主要包含两部分:几何学与代数学。几何学是研究空间形式的学科,而代数学则是研究数量关系的学科。
初等数学基本上是常量的数学。
高等数学含有非常丰富的内容,以大学本科所学为限,它主要包含:
解析几何:用代数方法研究几何,其中平面解析几何部分内容已放到中学。
线性代数:研究如何解线性方法组及有关的问题。
高等代数:研究方程式的求根问题。
微积分:研究变速运动及曲边形的求积问题。作为微积分的延伸,物理类各系还要讲授常微分方程与偏微分方程。
概率论与数理统计:研究随机现象,依据数据进行推理。
所有这些学科构成高等数学的基础部分,在此基础上建立了高等数学的宏伟大厦。
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”
以上就是数学又叫什么的全部内容, 。