7年级数学下?1、同底数的幂相乘:法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)2、幂的乘方:法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)3、积的乘方:法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。那么,7年级数学下?一起来了解一下吧。
数学教学计划是学校组织和管理数学教学过程的主要依据,也是学校对教育、教学质量监控与评价的基础性文件。下面是我为大家精心整理的人教版七年级数学下册教学计划,仅供参考。
人教版七年级数学下册教学计划范文一
一、学情分析:
本学期我将担任七年级的数学教学工作。通过上学期的教学,学生的计算能力、阅读理解能力、实践探究能力得到了发展与培养,对图形及图形间数量关系有初步的认识,逻辑思维与逻辑推理能力也得到初步提升,学生由形象思维向抽象思维转变,特别是抽象思维得到了较好的发展。 从上学期的教学中,发现有以下问题:部分学生没有达到应有的水平,学生课外自主拓展知识的能力几乎没有,很少有学生具有课外阅读相关数学书籍的习惯,没有形成对数学学习的浓厚兴趣,不能自行拓展与加深自己的知识面。本学期将继续促进学生自主学习,让学生亲身参与活动,进行探索与发现,以自身的体验获取知识与技能;努力实现基础性与现代性的统一,提高学生的创新精神和实践能力;体现现代信息社会的发展要求,通过各种教学手段帮助学生理解概念,操作运算,扩展思路。
二、教材分析
本学期的教学内容共计六章,
第5章:相交线和平行线;
第6章:平面直角坐标系;
第7章:三角形;
第8章:二元一次方程组;
第9章:不等式和不等式组;
第10章:数据的收集、整理与描述 整个教材体现了如下特点
1.现代性--更新知识载体,渗透现代数学思想方法,引入信息技术。
《满分训练设计:7年级数学(下)(人教版)》是由一线教学名师匠心独运打造的一套满分训练计划。这套训练计划旨在全面加强学生对数学基础知识的理解与掌握,通过练习不同类型的题目,帮助学生提升综合能力,拓展思维视野,探究数学的深层奥秘。训练内容覆盖了知识结构体系的各个方面,旨在帮助学生在考试中取得优异成绩,实现满分梦想。无论是基础知识的巩固,还是综合题目的挑战,甚至是拓展题目的深入探究,这套训练计划都能够提供有针对性的练习,让学习过程更加高效。无论是学生自己,还是家长和教师,都能在使用这套计划时发现其独特的优势和价值。通过《满分训练设计》的系统学习,学生将能够更加自信地面对数学学习,插上成功的翅膀,向着满分的目标迈进。
该训练计划包括了练基础、练综合、练拓展、练探究等多个环节,每一项都精心设计,旨在全面覆盖数学学习的各个方面。通过持续的练习,学生不仅能够巩固和深化对基础知识的理解,还能够在解决复杂问题的过程中提升自己的综合能力。在拓展和探究环节,学生将有机会接触更深层次的数学问题,培养解决问题的创新思维和独立探究的能力。这种全面而深入的训练,对于提高学生的数学素养和考试成绩具有显著的促进作用。
《满分训练设计:7年级数学(下)(人教版)》之所以受到广泛欢迎,不仅因为它具有高度的针对性和系统性,更因为它能够激发学生的学习兴趣,提升他们的学习动力。
通过教学设计原理和方法的学习、运用,可以培养有关人员科学思维的习惯,提高他们科学地分析问题、解决问题的能力。下面是我为大家精心整理的七年级数学下册第十章教案,仅供参考。
七年级数学下册第十章教案(一)
10.2直方图(1)
【教学目标】
知识与技能:
了解组距、频数、频数分布等概念;学会对数据进行合理的分组处理. 过程与方法:
培养学生从数据中获取信息,并利用信息的能力.
情感态度与价值观:
体验数学在生活中的价值,增强学生对数学学习的兴趣.
【教学重难点】
教学重点:对数据进行合理分组,列频数分布表.
教学难点:组距的确定.
教具准备:小黑板
教法:探究
学法:合作交流
课时:第1课时
课型:新授课
授课时间:
【教学过程】
一、复习引入
在前面我们学习了哪几种描述数据的方法?它们各自的优点是什么?
前面学习的描述数据的方法主要有条形图、扇形图、折线图,他们各自的优点是??(教师描述)
二、新课
1.问题提出:为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛,为此收集到了这63名同学的身高(单位:cm)如下,请同学们看书中P163收集的63个数据
.
选择身高在哪个范围的学生参加呢?为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况:身高在哪个范围内的学生多,哪个范围内的学生少,因此得对这些数据进行适当的分组整理.
2.对数据分组整理的步骤
①计算最大与最小值的差
最大值?最小值=172?149=23(cm)
这说明身高的范围是23cm.
②决定组距和组数
把所有数据分成若干个组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距;例如:第一组从149∽152,这时组距=152?149=3,则组距离就是3.
那么将所有数据分为多少组可以用公式:
(最大值?最小值)÷组距=组数,如:(最大值?最小值)÷组距=
=7,则可将这组数据分为8组. = 注意:组距和组数没有固定的标准,要根据具体问题来决定,分组数的多少原则上100个数以内分为5∽12组较为恰当.
③列频数分布表
频数:落在各个小组内的数据的个数.
在各个小组的分布状况用表格表示出来就是频数分布表,如:对上述数据列频数分布就得到频数分布表
讨论交流:
1.你能从频数分布表中得到何种信息?
2.比较原始数据与频数分布表的各自优点.
师生共同归纳:所以身高在155≤x<158,158≤x<161,161≤x<164三个组的人数共有12+19+10=41(人),因此,可以从身高在155∽164cm(不含164cm)的学生中选队员.
三、巩固练习
完成教科书168页练习题(不画频数分布图)
四、课堂小结
本节课对你有什么帮助?你有何感想?
五、作业布置
必做题:习题10.2第2,3题(不画统计图)
选做题:习题10.2第5题
七年级数学下册第十章教案(二)
10.2直方图(2)
【教学目标】
知识与技能:
学会画频数分布直方图与折线图.
过程与方法:
能从直方图和折线图中获取信息.
情感态度与价值观:
体会频数分布直方图和折线图在生活实际中的运用,体验数学价值.
【教学重难点】
教学重点:画频数分布直方图与折线图.
教学难点:从直方图和折线图中获取信息.
教具准备:小黑板
教法:引导
学法:合作交流
课时:第2课时
课型:新授课
授课时间:
【教学过程】
一、情景创设,引入新课
在前面我们用条形、扇形、折线三种统计图形象直观地描述了数据,那么对于一组数据的频数分布用什么图象来描述呢?那就需要用到频数分布直方图.
二、新课
1.频数分布直方图的绘制
频数分布直方图主要是直观形象地能看出频数分布的情况,上节课我们对63名学生的身高作了数据的整理,并且也列出了频数分布表,现在我们利用频数分布表作出相应的频数分布直方图.
(1)以横轴表示身高,纵轴表示频数与组书的比值;如图:
(2)小长方形面积的意义
从上图中可以看出:小长方形的面积=组距×(频数/组距)=频数,因此小长方形的面积就是反映数据落在各个小组内的频数的大小.
(3)用简便方法画频数分布直方图
在等距离分组中,由于小长方形的面积就是该组的频数,因此在作频数分布直方图时,小长方形的高完全可以用频数来代替.
如上图可作成下图的形式:
2.用频数折线图来描述频数的分布情况
频数折线图来描述,首先取直方图中高一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点(与直方图左右相隔半个组距)如在上图中,在横轴上取(147.5,0)与(174.5,0),将所取的这些点依次用线段连接起来,就得到频数折线图
.
三、例题讲解:
教材P166例题:为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度如下表.(单位:
cm)
列出样本的频数分布表,画出频数分布直方图.解答:见课本
将上述例题中的组距改为0.5,重新分组列频数分布表,画频数分布直方图. 过程与例题解答过程类似,可让学生自己完成.
对比两种方法得出的结论,不难看出将数据分成12个组与分成7个组相对比,有一点误差,这是正常的,由此可以看出,分的组越多,分析得越细致,对总体的估计要准确一些.
四、布置作业
必做题:习题10.2第1题
选做题:习题10.2第4题
七年级数学下册第十章教案(三)
10.3课题学习 从数据谈节水(1)
【教学目标】
知识与技能:
使学生经历收集、整理、分析数据,得出结论的过程,从中体会节水的重要性.
过程与方法: 通过分析数据,得出结论,让学生体会用数据分析问题的过程,提出合理化建议,感受数学给生活带来的价值.
情感态度与价值观:
通过具体的数据,使学生了解节水的重要性.
【教学重难点】
教学重点:学会收集、分析数据,从中得出结论,并能针对有关问题,给出解决办法.
教学难点:如何找到合理解决缺水问题的办法.
教具准备:多媒体
教法:引导
学法:合作交流
课时:第1课时
课型:新授课
授课时间:
【教学过程】
一、新课引入
资料展示(投影)当前世界淡水资源及我国有关缺水的形势的资料图片 问题:(1)看了这些图片,你有哪些感受?
(2)你了解世界及我国有关水资源的现状吗?
二、探究新知
活动一:阅读课本的“背景资料”,从中收集数据,画出统计图,并回答下列问题:
(1)地球上的水资源和淡水资源分布情况怎么样?
(2)我国农业和工业耗水量情况怎么样?
(3)我国不同年份城市生活用水的变化趋势怎么样?
(4)根据国外的经验,一个国家的用水量超过其可利用水资源的20%,就有可能发生“水危机”,依据这个标准,我国1990年是否曾出现“水危机”?
学生阅读资料,通过小组合作、讨论的形式完成活动一. 活动二:收集全班同学各家人均月用水量,用频数分布直方图和频数折线图描述这些数据,并回答下列问题:
(1)家庭人均月用水量在哪个范围的家庭最多?这个范围的家庭占全班家庭的百分之几?
(2)家庭人均月用水量最多和最少的各有多少家庭?各占全班家庭的百分之几?
(3)全班同学家庭人均日用水量的平均数是多少?按生活基本日均需水量(BWR)50升的用水标准,这个平均数是否超过用水标准?
(4)如果每人每天节约用水10升,按13亿人口计算,一天可以节约多少吨水?按BWR标准计算,这些水可提供给1个人多少年的生活用水?
七年级数学下册第十章教案相关文章:
1. 北师大版七年级数学下册教案
2. 北师大七年级数学下册教案
3. 北师大七年级数学下册教案
4. 七年级下册第五章数学教案
5. 北师大版七年级下册数学教案
1 过两点有且只有一条直线
2 两点之间线段最短
3 同角或等角的补角相等
4 同角或等角的余角相等
5 过一点有且只有一条直线和已知直线垂直
6 直线外一点与直线上各点连接的所有线段中,垂线段最短
7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行
8 如果两条直线都和第三条直线平行,这两条直线也互相平行
9 同位角相等,两直线平行
10 内错角相等,两直线平行
11 同旁内角互补,两直线平行
12两直线平行,同位角相等
13 两直线平行,内错角相等
14 两直线平行,同旁内角互补
15 定理 三角形两边的和大于第三边
16 推论 三角形两边的差小于第三边
17 三角形内角和定理 三角形三个内角的和等于180°
18 推论1 直角三角形的两个锐角互余
19 推论2 三角形的一个外角等于和它不相邻的两个内角的和
20 推论3 三角形的一个外角大于任何一个和它不相邻的内角
21 全等三角形的对应边、对应角相等
22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等
23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等
24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等
25 边边边公理(SSS) 有三边对应相等的两个三角形全等
26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等
27 定理1 在角的平分线上的点到这个角的两边的距离相等
28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上
29 角的平分线是到角的两边距离相等的所有点的集合
30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)
31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边
32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合
33 推论3 等边三角形的各角都相等,并且每一个角都等于60°
34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35 推论1 三个角都相等的三角形是等边三角形
36 推论 2 有一个角等于60°的等腰三角形是等边三角形
37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38 直角三角形斜边上的中线等于斜边上的一半
39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等
40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合
42 定理1 关于某条直线对称的两个图形是全等形
43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2
47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形
48定理 四边形的内角和等于360°
49四边形的外角和等于360°
50多边形内角和定理 n边形的内角的和等于(n-2)×180°
51推论 任意多边的外角和等于360°
52平行四边形性质定理1 平行四边形的对角相等
53平行四边形性质定理2 平行四边形的对边相等
54推论 夹在两条平行线间的平行线段相等
55平行四边形性质定理3 平行四边形的对角线互相平分
56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形
57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形
58平行四边形判定定理3 对角线互相平分的四边形是平行四边形
59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形
60矩形性质定理1 矩形的四个角都是直角
61矩形性质定理2 矩形的对角线相等
62矩形判定定理1 有三个角是直角的四边形是矩形
63矩形判定定理2 对角线相等的平行四边形是矩形
64菱形性质定理1 菱形的四条边都相等
65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角
66菱形面积=对角线乘积的一半,即S=(a×b)÷2
67菱形判定定理1 四边都相等的四边形是菱形
68菱形判定定理2 对角线互相垂直的平行四边形是菱形
69正方形性质定理1 正方形的四个角都是直角,四条边都相等
70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
71定理1 关于中心对称的两个图形是全等的
72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一
点平分,那么这两个图形关于这一点对称
74等腰梯形性质定理 等腰梯形在同一底上的两个角相等
75等腰梯形的两条对角线相等
76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形
77对角线相等的梯形是等腰梯形
78平行线等分线段定理 如果一组平行线在一条直线上截得的线段
相等,那么在其他直线上截得的线段也相等
79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰
80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第
三边
81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它
的一半
82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的
一半 L=(a+b)÷2 S=L×h
83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d
84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d
85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么
(a+c+…+m)/(b+d+…+n)=a/b
86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应
线段成比例
87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理 不在同一直线上的三点确定一个圆.
110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理 一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d<r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理 圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,
圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理 弦切角等于它所夹的弧对的圆周角
129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d>R+r ②两圆外切 d=R+r
③两圆相交 R-r<d<R+r(R>r)
④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)
136定理 相交两圆的连心线垂直平分两圆的公共弦
137定理 把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形
138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n兀R/180
145扇形面积公式:S扇形=n兀R^2/360=LR/2
146内公切线长= d-(R-r) 外公切线长= d-(R+r)
(还有一些,大家帮补充吧)
实用工具:常用数学公式
公式分类 公式表达式
乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理
判别式
b2-4ac=0 注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h 15
初一数学下册知识点总结:第五章 三角形
一、三角形及其有关概念
1、三角形:
由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:
三角形用符号“ ”表示,顶点是A、B、C的三角形记作“ ABC”,读作“三角形ABC”。
3、三角形的三边关系:
(1)三角形的两边之和大于第三边。
(2)三角形的两边之差小于第三边。
(3)作用:
①判断三条已知线段能否组成三角形
②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:
(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:
三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:
(1)三角形按边分类:
不等边三角形
三角形 底和腰不相等的等腰三角形
等腰三角形
等边三角形
(2)三角形按角分类:
直角三角形(有一个角为直角的三角形)
三角形锐角三角形(三个角都是锐角的三角形)
斜三角形
钝角三角形(有一个角为钝角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
以上就是7年级数学下的全部内容,初一数学下册知识点总结:第五章 三角形 一、三角形及其有关概念 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。