七年级数学下册教案?北师大版七年级下册数学不等式及其基本性质教案 1.理解并掌握不等式的概念及性质;(重点)2.会用不等式表示简单问题的数量关系.(重点、难点)一、情境导入 有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么,七年级数学下册教案?一起来了解一下吧。
人教版七年级数学下册全套教案,共187页,这里无法全部复制,你到我们网站去下载吧,百度搜索“飞翔教学资源网”就可以到我们网站
5.1相交线
[教学目标]
1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力
2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用
难点:理解对顶角相等的性质的探索
[教学设计]
一.创设情境激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角
在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。
观察剪刀剪布的过程,引入两条相交直线所成的角。
学生观察、思考、回答问题
教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,
二.认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配
共能组成几对角?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流。
科学的教案设计总是以某种七年级数学教学理论为依据的。以下是我为大家整理的人教版七年级数学下册 教学设计 ,希望你们喜欢。
人教版七年级数学下教学设计
5.3.2命题、定理
教学目的:1、知识与技能:了解命题的概念,并能区分命题的题设和结论.
2、经历判断命题真假的过程,对命题的真假有一个初步的了解.
3、初步培养学生不同几何语言相互转化的能力.
重点:命题的概念和区分命题的题设与结论.
难点:区分命题的题设和结论.
教学过程
一、创设情境复习导入
教师出示下列问题:
1.平行线的判定方法有哪些?
2.平行线的性质有哪些.
学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论)
二、尝试活动探索新知
教师给出下列语句,
①如果两条直线都与第三条直线平行,那么这条直线也互相平行;
②等式两边都加同一个数,结果仍是等式;
③对顶角相等;
④如果两条直线不平行,那么同位角不相等.
学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出―是‖或―不是‖的判断.初步感受到有些数学语言是对某件事作出判断的.
教师给出命题的定义.
判断一件事情的语句,叫做命题.
(3)命题的组成.
①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.
②命题的形成,可以写成“如果„„,那么„„”的形式。
数学教案主要是课时计划和教学计划的书面呈现。所以,下面不妨和我一起来阅读北师大版七年级下册数学不等式及其基本性质教案,希望对各位有帮助!
北师大版七年级下册数学不等式及其基本性质教案
1.理解并掌握不等式的概念及性质;(重点)
2.会用不等式表示简单问题的数量关系.(重点、难点)
一、情境导入
有一群猴子,一天结伴去摘桃子.分桃子时,如果每只猴子分3个,那么还剩下59个;如果每只猴子分5个,那么最后一只猴子分得的桃子不够5个.你知道有几只猴子,几个桃子吗?
二、合作探究
探究点一:不等式
【类型一】 不等式的概念
下列各式中:①-3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.不等式的个数有()
A.5个 B.4个 C.3个 D.1个
解析:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共4个.故选B.
方法总结:本题考查不等式的判定,一般用不等号表示不相等关系的式子是不等式.解答此类题的关键是要识别常见不等号:>,<,≤,≥,≠.如果式子中没有这些不等号,就不是不等式.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】 用不等式表示数量关系
根据下列数量关系,列出不等式:
(1)x与2的和是负数;
(2)m与1的相反数的和是非负数;
(3)a与-2的差不大于它的3倍;
(4)a,b两数的平方和不小于它们的积的两倍.
解析:(1)负数即小于0;(2)非负数即大于或等于0;(3)不大于就是小于或等于;(4)不小于就是大于或等于.
解:(1)x+2<0;
(2)m-1≥0;
(3)a+2≤3a;
(4)a2+b2≥2ab.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题
【类型三】 实际问题中的不等式
亮亮准备用自己节省的零花钱买一台学生平板电脑.他现在已存有55元,计划从现在起以后每个月节省20元,知道他至少需要350元,则可以用于计算所需要的月数x的不等式是()
A.20x-55≥350 B.20x+55≥350
C.20x-55≤350 D.20x+55≤350
解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元,知道他至少需要350元.列出不等式20x+55≥350.故选B.
方法总结:用不等式表示实际问题中数量关系时,要找准题干中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.
变式训练:见《学练优》本课时练习“课堂达标训练”第4题
探究点二:不等式的性质
【类型一】 比较代数式的大小
根据不等式的性质,下列变形正确的是()
A.由a>b得ac2>bc2
B.由ac2>bc2得a>b
C.由-12a>2得a<2
D.由2x+1>x得x<-1
解析:A中a>b,c=0时,ac2=bc2,故A错误;B中不等式的两边都乘以或除以同一个正数,不等号的符号不改变,故B正确;C中不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边也应乘以-2,故C错误;D中不等式的两边都加或减同一个整式,不等号的方向不变,故D错误.故选B.
方法总结:本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题