当前位置: 首页 > 学科分类 > 数学

六年级数学重点知识,六年级数学重点知识归纳

  • 数学
  • 2024-07-03

六年级数学重点知识?.那么,六年级数学重点知识?一起来了解一下吧。

六年级下册数学知识点公式

小学数学毕业总复习无论是对学生掌握数学知识的水平层次,还是对教师全面提高教学效益都有着举足轻重的意义和作用。为切实抓好总复习工作,全面提高六年级教学质量,特拟订以下复习计划,供大家参考。一、复习目标:1、使学生比较系统的牢固的掌握有关整数、小数、分数、比和比例、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活的进行计算,会解简易方程,养成检查和验算的习惯。2、使学生巩固已获得的一些计量单位的大小的表象,牢固的掌握所学的单位间的进率,能够比较熟练的进行名数的简单改写。3、使学生牢固的掌握所学的几何形体的特征,能够比较熟练的计算一些几何形体的周长、面积和体积,巩固所学的画图、测量等技能。4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。5、使学生牢固的掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活的运用所学知识独立的解答不复杂的应用题和生活中的一些简单的实际问题。二、复习重点:⒈整、小、分数四则运算,混合运算和简算,解方程和解比例。⒉复合应用题、分数、百分数应用题。⒊几何形体知识。⒋综合运用知识,解决实际问题。三、复习难点:⒈使学生对所学基础知识┄概念、性质、法则、公式以及常见数量关系系统化,并能融会贯通。⒉灵活解答应用题的能力和方法。⒊准确的进行计算。四、复习关键:掌握“双基”,并能灵活运用。五、复习方法:⒈分阶段复习⑴系统复习,24课时左右。⑵专题复习,12课时左右。⑶综合检测,查漏补缺,根据具体情况而定。⒉复习主要采用讲练结合,以练为主的方法进行。六、复习时间安排:第一阶段——24课时左右
⒈数和数的运算(6课时)这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。⑴、数的意义、数的读法和写法⑵、数的改写、数的大小比较⑶、数的整除、分数小数的基本性质⑷、四则运算的意义和法则⑸、运算定律和简便算法⑹、四则混合运算⒉代数的初步知识(3课时左右)本节重点内容应放在掌握简易方程及比和比例的 辨析。⑴、用字母表示数⑵、简易方程⑶、比和比例⒊应用题(7课时左右)这节重点放在应用题的分析和解题技能的发展上,难点内容是分数应用题。⑴、简单应用题(1课时)⑵、复合应用题(2课时)⑶、列方程解应用题(2课时)⑷、用比例知识解应用题(2课时)⒋、量的计量(2课时左右)本节重点放在名数的改写和实际观念上。⑴、长度、面积、体积、重量、时间单位⑵、名数的改写⒌、几何初步知识(5课时左右)本节重点放在对特征的辨析和对公式的应用上。⑴、平面图形的认识⑵、平面图形的周长和面积⑶、立体图形的认识⑷、立体图形的面积和体积⒍、简单的统计(2课时左右)本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。⑴、平均数⑵、统计表⑶、统计图 注:在复习第一阶段中,需要穿插4份综合练习。第二阶段:专题 复习训练(12课时左右)⒈ 四则混合运算、简算、解方程、解比例的强化训练。⒉几何形体公式的实际综合应用。⒊各类应用题的训练。⒋填空题和判断题的强化。第三阶段——根据具体情况而定。综合练习和评讲,及时查漏补缺。七、复习中的注意点:1、注意启发,引导学生进行进行合理的整理和复习。2、注重“双基”训练,夯实知识功底。3、以教材为本,扣紧大纲。4、加强反馈,注意因材施教。5、力求作到上不封顶,下要保底。八、总复习复习措施:1、在复习分块章节时,重视基础知识的复习,加强知识之间的联系,使学生在理解上进行记忆。比如:基础概念、法则、性质、公式这类。在课堂上在系统复习中纠正学生的错误,同时防止学生机械的背诵;对于计量单位要求学生在记忆时,理顺关系。2、在复习基础知识的同时,紧抓学生的能力。⑴、在四则混合运算方面,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用自习与课后辅导时间对学生进行多次的过关练习。⑵、在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题内型的衍射性指导学生学习。⑶、应用题中着重训练学生的审题,分析数量关系,寻求合理的简便的方法,讲练结合,归纳总结,抓订正、抓落实。3、在复习过程中注意启发,加强导优辅差。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。要做到突出尖子生,重视学困生,努力提高中等生。4、在复习期间,引导学生主动自觉的复习,学习系统化的归纳整理,对于学生多采用鼓励的方法,调动学习的积极性。5、加强审题训练,提高解题能力。在复习时,教师应切实加强学生认真读题,审题习惯的培养。让学生在读题时读清、读透。6、在复习当中,对于学生的掌握情况要及时做到心中有数,认真与学生进行反馈交流。以达到预期的复习目标。

六年级数学必考重点题

展开全部

体积和表面积
三角形的面积=底×高÷2。 公式 S= a×h÷2
正方形的面积=边长×边长 公式 S= a2
长方形的面积=长×宽 公式 S= a×b
平行四边形的面积=底×高 公式 S= a×h
梯形的面积=(上底+下底)×高÷2 公式 S=(a+b)h÷2
内角和:三角形的内角和=180度。
长方体的表面积=(长×宽+长×高+宽×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方体的表面积=棱长×棱长×6 公式: S=6a2
长方体的体积=长×宽×高 公式:V = abh
长方体(或正方体)的体积=底面积×高 公式:V = abh
正方体的体积=棱长×棱长×棱长 公式:V = a3
圆的周长=直径×π 公式:L=πd=2πr
圆的面积=半径×半径×π 公式:S=πr2
圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh
圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。 公式:S=ch+2s=ch+2πr2
圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh
圆锥的体积=1/3底面×积高。公式:V=1/3Sh
算术
1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:a + b = b + a
3、乘法交换律:a × b = b × a
4、乘法结合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性质:a ÷ b ÷ c = a ÷(b × c)
7、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
8、有余数的除法: 被除数=商×除数+余数
方程、代数与等式
等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
方程式:含有未知数的等式叫方程式。
一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
代数: 代数就是用字母代替数。
代数式:用字母表示的式子叫做代数式。如:3x =ab+c
分数
分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。
分数除以整数(0除外),等于分数乘以这个整数的倒数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小
分数的除法则:除以一个数(0除外),等于乘这个数的倒数。
真分数:分子比分母小的分数叫做真分数。
假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
带分数:把假分数写成整数和真分数的形式,叫做带分数。
分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
数量关系计算公式
单价×数量=总价 2、单产量×数量=总产量
速度×时间=路程 4、工效×时间=工作总量
加数+加数=和 一个加数=和+另一个加数
被减数-减数=差 减数=被减数-差 被减数=减数+差
因数×因数=积 一个因数=积÷另一个因数
被除数÷除数=商 除数=被除数÷商 被除数=商×除数
长度单位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面积单位:
1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1亩=666.666平方米。
体积单位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量单位
1吨=1000千克 1千克= 1000克= 1公斤= 1市斤

什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18
比例的基本性质:在比例里,两外项之积等于两内项之积。
解比例:求比例中的未知项,叫做解比例。如3:χ=9:18
正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y
反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x×y = k( k一定)或k / x = y
百分数
百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
要学会把小数化成分数和把分数化成小数的化发。
倍数与约数
最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。
最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。
互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。
通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)
约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。
最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。
分解质因数:把一个合数用质因数相成的方式表示出来叫做分解质因数。
倍数特征:
2的倍数的特征:各位是0,2,4,6,8。
3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。
5的倍数的特征:各位是0,5。
4(或25)的倍数的特征:末2位是4(或25)的倍数。
8(或125)的倍数的特征:末3位是8(或125)的倍数。
7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。
17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。
19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。
23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。
倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。
互质关系的两个数,最大公约数为1,最小公倍数为乘积。
两个数分别除以他们的最大公约数,所得商互质。
两个数的与最小公倍数的乘积等于这两个数的乘积。
两个数的公约数一定是这两个数最大公约数的约数。
1既不是质数也不是合数。
用6去除大于3的质数,结果一定是1或5。
奇数与偶数
偶数:个位是0,2,4,6,8的数。
奇数:个位不是0,2,4,6,8的数。
偶数±偶数=偶数 奇数±奇数=奇数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相临自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
奇数≠偶数
整除
如果c|a, c|b,那么c|(a±b)
如果,那么b|a, c|a
如果b|a, c|a,且(b,c)=1, 那么bc|a
如果c|b, b|a, 那么c|a
小数
自然数:用来表示物体个数的整数,叫做自然数。0也是自然数。
纯小数:个位是0的小数。
带小数:各位大于0的小数。
循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。如3. 141414
不循环小数:一个小数,从小数部分起,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做不循环小数。如3. 141592654
无限循环小数:一个小数,从小数部分到无限位数,一个数字或几个数字依次不断的重复出现,这样的小数叫做无限循环小数。如3. 141414……
无限不循环小数:一个小数,从小数部分起到无限位数,没有一个数字或几个数字依次不断的重复出现,这样的小数叫做无限不循环小数。如3. 141592654……
利润
利息=本金×利率×时间(时间一般以年或月为单位,应与利率的单位相对应)
利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。一月的利息与本金的比值叫做月利率。

六年级必背知识考点数学

小学六年级数学总复习指导提纲一、总复习的内容和目标数的认识 ① 理解整数、小数、分数、百分数的意义,能按要求写数和读数。② 会比较数的大小,能把几个不同类的数按要求排列。③ 会改变计数单位进行数的改写;会用四舍五入法取一个数的近似值。④ 理解小数、分数、百分数间的联系和区别,会小数、分数、百分数的互化。⑤ 理解小数的性质,会应用小数的性质和小数点位移规律解答有关问题。⑥ 理解分数的基本性质,会约分和通分。数的计算① 理解四则运算的意义,掌握四则运算的计算法则,能口算,会笔算。② 掌握加法、减法、乘法、除法各部分间的关系,会灵活应用关系进行验算。③ 掌握四则混合运算的运算步骤和方法,会计算两、三步计算的混算式题。④ 掌握运算定律和性质,能灵活应用定律或性质进行简便计算。⑤ 会使用小括号和中括号,会列综合算式解两、三步计算的文字题。⑥ 掌握整除和除尽的关系,理解约数和倍数、质数和合数、奇数和偶数,区分质数、互质数、质因数,会分解质因数,会求两个数的最大公约数和两、三个数的最小公倍数。比和比例① 理解比的意义和基本性质,会写出两个数(量)的比,会求比值和化简比。② 掌握比、除法、分数之间的关系,能进行三者之间的相互转换。③ 知道比例尺,会按比例分配,会解答有关比例尺和按比例分配的应用题。④ 理解比例的意义,掌握比例的基本性质,会组比例、解比例。⑤ 掌握正、反比例的判定方法,能判断两个量成不成比例、成什么比例,会解答正、反比例应用题。代数知识① 会用含有字母的式子表示一般数量关系。② 会用数字代替字母,然后求式子的值。③ 明确等式和方程的关系,会解简易方程,会检验方程的解。④ 会用字母表示要求的数,列方程解已知含求的文字题和逆向思考的应用题。几何知识 ① 知道直线、射线、线段的关系;知道各种类型的角。② 会画:⑴角;⑵线段;⑶垂线和平行线;⑷三角形、平行四边形、梯形的高。③ 掌握平面图形(长方形、正方形、平行四边形、三角形、梯形、圆)的基本特征,知道周长和面积公式的推导,会求周长和面积。④ 掌握立体图形(长方体、正方体、圆柱、圆锥)的基本特征,知道表面积、侧面积、体积公式的推导,会求表面积、侧面积、体积和容积。⑤ 知道长度、面积、体积(容积)、质量(重量)、时间、人民币的单位和进率,会进行同类名数的改写。解决问题 ① 掌握解答应用题的步骤和方法,会解决实际问题。② 会收集、整理数据,会补充完成统计表、统计图的制作,会从图表中找出有关数据,通过计算解决问题;会根据图表中的数据提出并解决数学问题。二、总复习的具体做法总复习的四个基本策略:1.巩固知识,以练为主。巩固知识是复习课的主要任务。以练为主,且以学生自己笔练为主,应作为巩固知识的主要策略。复习时教师除了帮助学生理清要点和说明常见错误的防止和纠正策略外,应大胆放心地让学生自己练习,通过练习,巩固知识,获得提高。2.整理知识,学生为主。整理知识是复习课的重要一环。在教师引导下以学生自己为主,井通过同学之间的交流来整理知识,学生容易理清知识和理解知识之间的联系区别,记牢知识和应用知识解决简单实际问题。3.查漏补缺,调查为先。查漏补缺是复习的重要内容。所以在复习前摸清学生中的“漏”和“缺”非常重要,在复习课中应十分重视补“缺漏”和纠错误。摸清“缺漏”和常见的错误,平时摘记学生作业中的问题不失为一个好方法,在复习课之前,作些摸底调查也非常必要。4.发展提高,思维为先。发展提高是复习的又一重要目的。通过复习在巩固知识的同时,应让大多数学生除了在知识技能方面有所发展和提高外,更主要的应该让学生在思维方面有所发展有所提高,特别要注意发展提高学生的发现探索数学规律的能力、解决简单实际问题的能力和综合应用的能力。拟好或选好复习题是重要一环。通过练习达到既巩固整理知识又能发展提高的目的。复习课的三条教学原则:1.自主性原则在复习过程中,要充分发挥学生的自主性,让学生积极、主动参与复习全过程,特别是要让学生参与归纳、整理的过程,不要用教师的归纳代替学生的整理。在复习中要体现:知识让学生疏理;规律让学生寻找;错误让学生判断。充分调动学生学习的积极性和主动性,激发学生学习兴趣。2.针对性原则复习必须突出重点,针对性强,注重实效。在复习过程中,一是要注意全班学生的薄弱环节,二是要针对个别学生的存在问题。要紧扣知识的易混点、易错点设计复习内容,做到有的放矢,对症下药。3.系统性原则在复习过程中,必须根据知识间的纵横联系,系统规划复习和训练内容,使学生所学的分散知识系统化。总复习要做到“四抓”:一抓重点——数学总复习,决不能只是多做一些题目,应该复习数学的基础知识。小学数学一共有十二册书,内容很多,要抓住教材中最主要的内容复习。如复习数的概念时,就要抓整数、分数和小数的意义和性质。又如整、小数应用题,千变万化,种类很多,复习时就要抓数量关系和分析、思考应用题的一般方法。对一些掌握较好的知识,只要适当复习,引起回忆就可以了;对一些还没有掌握住的知识,就需要重点复习,把它们彻底弄懂。二抓串连——数学知识相互之间是密切联系的,总复习时不能把它们孤立起来死记硬背。要注意知识的系统性,把有关的知识串连起来,能帮助学生理解,帮助学生记忆。如比、分数和除法之间是有关的,比的性质、分数的性质和除法的商不变规律也是一致的,弄清它们之间的联系,就能掌握住一大片知识。三抓比较——有些数学知识之间容易混淆,要把那些往往会弄错的概念、练习题列举出来,相互比较,把它们正确地区别开来。在总复习时,要把多方面的知识灵活的综合运用,这对提高解题能力是很重要的。四抓合理安排——应当合理安排时间,切不可整天埋头去啃书本、做练习,要积极参加体育锻炼和文娱活动。丰富的课余生活能调节大脑,提高复习的效率。复习课的六种方法:预习法:让学生自己复习。因为复习课讲的内容基本上是学生已学过的知识,布置学生预习,可以发挥学生的主动性。学生通过预习,加深了对已有知识的理解,会收到事半功倍的效果。整理归纳法:教师在研究教材的基础上,把学过的知识按一定的模式予以分类、整理,以求系统连贯,便于学生的复习与提高。比较法:比较是重要的也是常用的思维方法。在数学复习课中利用比较法复习,可以帮助学生分清知识的联系与区别,便于对知识的理解和记忆。讨论法:讨论法便于有针对性地解决一些复习中的疑难问题,提高复习效果。同时也便于教师及时掌握复习过程的反馈信息,以便更有效地进行下一步复习。讨论法可以由教师精心设计问题,引导学生利用已有的知识和方法对问题进行正确的分析,圆满地解决问题。变题法:变题是加深对应用题理解的良好训练方法。利用变题法复习有两个好处:一是进一步深化对应用题的理解,掌握规律;二是加强对不同类型的应用题的比较,防止知识负迁移。补缺法:平时学习中,学生不可避免地存在一些缺漏。教师要通过课堂练习、课外作业等,掌握这方面的情况,有的错误和缺点,教师虽然作了纠正,但不一定能完全解决问题。因此,对于教材上那些容易混淆和学生在练习时容易出差错的地方,要通过复习课来补缺。利用补缺法复习,需要教师精心设计例题和习题,要使学生感到补充的例题和习题不是乏味的重复,从而激发他们的复习兴趣,得到求知的满足。复习课的五步操作程序: 忆→清→析→练→评一忆——让学生回忆所学的主要内容,并让学生进行讨论、口述。回忆,就是学生将过去学过的旧知识不断提取而再现的过程。教师要有意识地引导学生看课题回忆所学的知识,看课本目录回忆单元知识。复习开始时,先向学生说明复习的内容和要求,然后引导学生回忆。回忆时,可先粗后细,并让学生进行充分讨论,在此基础上引导学生进行口述,或出示有关复习提纲,引导学生进行系统的回忆。二清——“清”是引导学生对所学的知识进行梳理、总结、归纳,帮助学生理清知识线索,分清解题思路,弄清各种解题方法联系的过程。要根据学生的回忆,进行从点——线——面的总结,做到以一点或一题串一线、联一面,特别是要注意知识间纵横向的联系和比较,构建知识网络。要教会学生归纳、总结的方法。在帮助学生理清知识脉络时,可以根据复习内容、教学信息容量的多少,分项、分步进行整理。 “清”的过程是疏理、沟通的过程,是将所学知识前后贯通,把知识进行泛化的过程。“清”是复习课的鲜明特征。三析——对专题中的重点内容和学生中的疑难作进一步的分析,帮助学生解决重点、难点和疑点,从而使学生全面、准确地掌握教材内容,加深理解。这一环节重在设疑、答疑和析疑上。如果专题的内容较多时,可以分类、分专项进行分析、对比。四练——选择有针对性、典型性、启发性和系统性的问题,引导学生进行练习。通过练习,提高学生运用知识解决实际问题的能力,发展学生的思维能力。练习时,可通过题组的形式呈现练习内容。内容要注意算理、规律或知识技能、知识的纵横联系,抓一题多解或一题多变,做到举一反三,使学生通过练习不断受到启发,在练习中进一步形成知识结构。在练习设计中,可通过典型多样的练习,帮助学生系统整理;设计对比练习,帮助学生沟通辩析;设计综合发展练习,提高学生的解题能力。五评——让学生对复习的结果进行评价与反馈。通过教学评价给予学生一种成功的体验或紧迫感,从而强化或激励学生好好学习,并进行及时的反馈和调控,改进学习方法。复习完成时,可适当选取数量适当的题目进行当堂检测。构建主体参与的五个做法: 看、思、说、做、评一看——观察。教师引导学生通过课前观察,课中呈求直观材料,引导学生仔细观察,从而积累丰富的生活经验和形象直观的表象,为开展复习提供相对清淅的表象,为提取和组合表象奠定良好的基础。二思——思考。教师引导学生在观察的基础上,通过认真地思考,寻找解决问题的方法,理清解题思路,明确解题方法。三说——讨论。让学生在自主思考的基础上,在组内认真地交流自己的思考所得;或者在组间交流本小组研究的结晶,使复习的思路越辩越清。四做——解题。让学生在明确思路的基础上,通过分工与合作,自己动手操作,解决研究问题。五评——评价。让学生参与到复习的评价活动中来,使学生们在评价他人的时候,得到启迪,受到鼓舞。同时,对自己的研究行为进行相对公正、客观、合理地评价。总复习中应注意的十点:1.坚持教材为本,扣紧数学大纲,参考课程标准,把握复习要求,制定复习计划,设计复习过程。(理解概念,计算验算,分析列式,几何作图,应用公式)教师应把复习课上成促进学生智能发展的课。要改变过去以教师的串讲为主的传统做法,做到内容、形式丰富多彩,生气勃勃;结构合理。复习课力求上得既轻松愉快、又有实效。虽然复习的基本内容学生是学过的,熟知的,但复习不应是简单的重复,要靠教师精心组织,着意引导。要选择学生喜闻乐见、富于启发思考的形式,吸引学生参与复习的全过程。2.在复习分块章节时,重视基础知识的复习,加强知识之间的联系,使学生在理解的基础上进行记忆。比如:概念、法则、性质、公式等,在系统复习中纠正学生的错误,同时防止学生机械的背诵;对于计量单位要求学生在记忆时,理顺关系。3.在复习基础知识的同时,紧抓学生的能力培养。① 在四则混合运算方面,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用自习与课后辅导时间对学生进行多次的过关练习。② 在量的计量和几何初步知识的复习中,要多利用实物的直观性培养学生的空间想象能力,利用习题类型的衍射性指导学生学习。③ 在应用题的复习中着重训练学生的审题,分析数量关系,寻求合理的简便的方法,讲练结合,归纳总结,抓订正、抓落实。4.在复习过程中注意启发,加强导优辅差。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。要做到突出尖子生,重视学困生,提高中等生。5.在复习期间,引导学生主动自觉的复习,学习系统化的归纳整理,对学生要多采用鼓励的方法,调动学习的积极性。6.加强审题训练,提高解题能力。在复习时,教师应切实加强学生认真读题,审题习惯的培养。让学生在读题时读清、读透。7.在复习中,对学生的掌握知识的情况要及时,做到心中有数,认真与学生进行反馈交流,以达到预期的复习目标。8.克服下列错误的思想和做法:① 单纯为应付考试而复习,猜题押题,死记硬背;② 加重学生负担,挤占学生休息和活动的时间;③ 重少数学生的培优,轻多数学生的提高;④ 只注重解题,忽视必要的归纳总结和寻找规律;⑤ 只重知识技能,不重发展学生的数学思维能力;⑥ 只管上课不管效果。9.实行“复习——检测——分析——补救”,全面掌握知识,培养数学能力。10.在学生自主复习的基础上,组织小组合作学习,开展组间竞赛活动,尽最大可能使优秀生更优秀,尽量缩小优生与差生的距离。

小学1~6年级数学重点知识整理

下面是我的复习资料。1 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 2 1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3 速度×时间=路程 路程÷速度=时间 路程÷时间=速度 4 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 5 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数×因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商×除数=被除数 小学数学图形计算公式 1 正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a 2 正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a 3 长方形 C周长 S面积 a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4 长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5 三角形 s面积 a底 h高 面积=底×高÷2 s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高 6 平行四边形 s面积 a底 h高 面积=底×高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)小学奥数公式 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题的公式 和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数) 差倍问题的公式 差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数) 植树问题的公式 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题的公式 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题的公式 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题的公式 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题的公式 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题的公式 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 参考资料:百度知道 (一)数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。 2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。 4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。 6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。 7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。 8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。 (二)数的改写 一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。 1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。 2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。 3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。 4. 大小比较 1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。 2. 比较小数的大小:先看它们的整数部分,,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大…… 3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。 (三)数的互化 1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。 2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。 3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。 4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。 5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。 7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (四)数的整除 1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。 2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。 3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。 (五) 约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 小数 1 小数的意义 把整数1平均分成10份、100份、1000份…… 得到的十分之几、百分之几、千分之几…… 可以用小数表示。 一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类 纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 …… 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:∏ 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 …… 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 ……的循环节是“ 9 ” , 0.5454 ……的循环节是“ 54 ” 。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 …… 0.5656 …… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 …… 0.03333 …… 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 …… 简写作 0.5302302 …… 简写作 。 分数 1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。 在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。 把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 (四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。

六年级数学试卷可打印

一、数与代数
(一)数的意义
(1) 理解整数、小数、分数、百分数、正数、负数的意义,能按要求写数和读数。
(2)会比较数的大小,能把几个不同类的数按要求排列。
(3)能根据计数单位进行数的改写;会用四舍五入法取一个数的近似值。
(4)理解小数、分数、百分数间的联系和区别,会小数、分数、百分数的互化。
(5)理解小数的性质,会用小数的性质和小数点位置移动引起小数大小变化规律解答有关问题。
(6)掌握因数、倍数、质数、合数、奇数、偶数、互质数的意义,知道能被2、5、3整除的数的特征,会求两个数的最大公因数和最小公倍数。
(7)理解分数的基本性质,掌握分数与除法的关系,会约分和通分。
(二)数的计算
(1)理解四则运算的意义,掌握四则运算的计算法则,能口算、估算,会笔算。
(2)掌握加法、减法、乘法、除法各部分间的关系,会灵活应用关系进行验算。
(3)掌握四则混合运算的运算步骤和方法,会使用小括号和中括号,会计算两、三步计算的混算运算。
(4)掌握运算定律和性质,能灵活应用定律或性质进行简便计算。
(5)掌握解答整数、小数、分数(百分数)应用题的步骤和方法,会解决实际问题。
(三)比和比例
(1)理解比的意义和基本性质,会写出两个数(量)的比,会求比值和化简比。
(2)掌握比、除法、分数之间的关系,能进行三者之间的相互转换。
(3)知道什么是比例尺,会按比例分配,会解答有关比例尺和按比例分配的应用题。
(4)理解比的意义,掌握比的基本性质,会化简比和求比值。
(5)掌握正、反比例的判定方法,能判断两个量成不成比例、成什么比例。
(四)代数知识
(1)会用含有字母的式子表示一般数量关系。
(2)会用数字代替字母,然后求式子的值。
(3)明确等式和方程的关系,会解简易方程,会检验方程的解。
(4)会用字母表示要求的数,会列方程解逆向思考的应用题。
二、空间与图形
(1)知道直线、射线、线段的关系;知道各种类型的角,会测量角的大小。
(2)会画:①角;②线段;③垂线和平行线;④三角形、平行四边形、梯形的高。
(3)掌握平面图形(长方形、正方形、平行四边形、三角形、梯形、圆)的基本特征,知道周长和面积公式的推导,会求周长和面积,能将公式变形(如:根据长方形的面积计算公式可以推导出:a=s÷b或b=s÷a),会求组合图形的面积。
(4)掌握立体图形(长方体、正方体、圆柱、圆锥)的基本特征,知道表面积、侧面积、体积公式的推导,会求表面积、侧面积、体积和容积。
(5)知道长度、面积(地积)、体积(容积)、质量(重量)、时间、人民币的单位和进率,会进行同类名数的改写。
(6)知道什么是轴对称图形,会画出一个轴对称图形的所有对称轴。能按要求将一个图形进行平移、旋转、放大、缩小。
(7)能在坐标轴中确定一个事物的位置(包括方向、距离等)。
三、统计与概率
(1)会收集、整理数据,会补充完成统计表、统计图的制作,会从图表中找出有关数据,通过计算解决问题;会根据图表中的数据提出并解决数学问题;能看出统计图、统计表中所蕴含的数学信息。
(2)理解平均数、中位数、众数的意义,会求一组数据的平均数、中位数、众数。
(3)能确定事件发生的可能性及其大小。

以上就是六年级数学重点知识的全部内容。

猜你喜欢