当前位置: 首页 > 所有学科 > 数学

数学的研究对象,数学的主要研究对象

  • 数学
  • 2023-04-12
目录
  • 数学有哪些特点怎样理解这些特点
  • 简述数学研究的对象
  • 什么是数学pdf
  • 高中数学的研究对象
  • 数学小课题研究成果

  • 数学有哪些特点怎样理解这些特点

    数学——研究现旅蠢颤实世界的数量关系和空间形式的科学.

    数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学.

    纯粹数学也叫基础数学,专门拆败研究数学本身的内部规律.中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学.纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式.例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是档迹梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系.

    简述数学研究的对象

    数学主要研究山数的世芦对象是数和变量,要解决的问题是数和数的计算,变量和变量的关系,主要特搜唯带点是抽象,例如应用题可以用方程思想也可以用函数思想,希望采纳。

    什么是数学pdf

    什么是数学?有人说:“数学,不就是数的学问吗?”

    这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。

    历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”

    那么,究竟什么是数学呢?

    伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”凳码。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。

    数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。

    纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。

    应用数学则是一个庞大的,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。

    高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现枣姿哪在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。

    体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。

    广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连册指过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。

    各门科学的“数学化”,是现代科学发展的一大趋势。

    参考资料:http://library.thinkquest.org/C006364/GB/interest/math.htm

    高中数学的研究对象

    数学是研究数量关系和空间形式的科学。

    数学是一切科学(科技)研究的基础。正是由于数学的发展,我们现在才能够利用它来发展其他科学。尽管21世纪才过去20年,数学领域已经出现了很多重大的研究成果。

    例如,2011年,彼得·舒尔茨(Peter Scholze)引入了完美胚空间(Perfectoid Spaces)的概念,震惊了代数和算术几何领域。完美胚空间是存在于p进几何领域的一类代数几何对象。

    数与形是数学的两个研究对象

    数与形是首物数学的两个研究对象,数代者脊液表的是数量关系,形代表的是空间形式。数形结合方法充分体现了化归理念,在数学的教学过程中可以用这种方法,对于学野唤生的思考、解决问题的能力有很大的提升。

    数形结合主要分为三种情况:第一种为由形思数,其方法为解析法、代数法与三角法等;第二种为由数思形,其方法为构造图形法;第三种为数形互化,其方法为图示法、体积法与面积法等。

    数学小课题研究成果

    u=x-t,上限t=x导出u=x-t=0,下限t=0导出u=x-0=x。

    指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

    广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

    主要内容包括:数列、极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科、财经类研究生考试的基础科目。

    在中国理工科各类专业的学生(数学专业除外,数学专业学数学迟指分析),学的数学较难,课本常称“高等数学”;文史科各类专业的学生,学的数学稍微浅一些,课本常称“微积分”。理工科的不同专业,文史科的不同专业,深浅程度又各不相同。研究变量的是高等数学,可高等数学并不只研究变量。至于与“高等数基旦轮学”相伴的课程通常有:线性代数(数学专业学高等代数),概率论与数理统计(有些数学专业分开学)。

    初等数学研究的是常量与匀变量,高等数学研究的是搏信非匀变量。高等数学(它是几门课程的总称)是理、工科院校一门重要的基础学科,也是非数学专业理工科专业学生的必修数学课,也是其它某些专业的必修课。

    作为一门基础科学,高等数学有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。抽象性和计算性是数学最基本、最显著的特点,有了高度抽象和统一,我们才能深入地揭示其本质规律,才能使之得到更广泛的应用。严密的逻辑性是指在数学理论的归纳和整理中,无论是概念和表述,还是判断和推理,都要运用逻辑的规则,遵循思维的规律。所以说,数学也是一种思想方法,学习数学的过程就是思维训练的过程。

    人类社会的进步,与数学这门科学的广泛应用是分不开的。尤其是到了现代,电子计算机的出现和普及使得数学的应用领域更加拓宽,现代数学正成为科技发展的强大动力,同时也广泛和深入地渗透到了社会科学领域。

    猜你喜欢