数学期望的计算?数学期望的六个公式如下:1、总和期望公式:E(X+Y)=E(X)+E(Y)。2、乘积期望公式:E(XY)=E(X)×E(Y)。3、方差公式:方差是各个数据与平均值之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2++(xn-x_)^2],x_为数据的平均数,n为数据的个数。4、那么,数学期望的计算?一起来了解一下吧。
超几何分布:x~h(n,m,n)
,则:数学期望ex=nm/n
;方差dx=(nm/n)·[1-(m/n)]·[(n-n)/(n-1)]
;
数学期望的六个公式如下:
1、总和期望公式:E(X+Y)=E(X)+E(Y)。
2、乘积期望公式:E(XY)=E(X)×E(Y)。
3、方差公式:方差是各个数据与平均值之差的平方的平均数,即s^2=(1/n)[(x1-x_)^2+(x2-x_)^2+...+(xn-x_)^2],x_为数据的平均数,n为数据的个数。
4、协方差公式:协方差是衡量两个变量的总体误差,表示为Cov(X,Y)=E{[X-E(X)][Y-E(Y)]}。协方差与相关性有关,当两个变量相同时,协方差就是方差。
5、零期望公式:随机变量X的所有可能取值x1,x2,...,xn的概率之和为1,且每个取值的概率乘以该取值都为0,即E(X)=x1p(x1)+x2p(x2)+...+xn*p(xn)=0,称随机变量X的期望为0,这就是零期望公式。
6、定义期望公式:期望是概率加权下的“平均值”,即E(X)=∑[x*p(x)],x是随机变量X的所有可能取值,p(x)是对应取值的概率。这个公式是期望的基本定义,也是计算期望的基础。

1、求和符号Σ的运算公式和性质 :
公式:∑ ai(i=1……),∑表示连加,右边写通式,上下标写范围,∑称为连加号,意思为:a1+a2+……+an=n。
“i”表示通项公式中i是变量,随着项数的增加而逐1增加 ,“1”表示从i=1时开始变化,上面的“n”表示加到i=n,“ai”是通项公式。
性质:∑(cx)=c∑x,c为常数。
2、数学期望E的运算公式和性质:
公式:如果X、Y独立,则:E(XY)=E(X)*E(Y)。
如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义。或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)。
性质:
当X和Y相互独立时,
扩展资料:
例子
某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个。
则此城市中任一个家庭中孩子的数目是一个随机变量,记为X。它可取值0,1,2,3。
其中,X取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03。

记D(x)为该数据的方差,E(x)为期望,则D(x)=E(x^2)-[E(x)]^2,这样就可以把
E(X²)求出来,或者直接用定义法求也可以。。

数学期望是试验中每次可能结果的概率乘以其结果的总和。
计算公式:
1、离散型:
离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi),则:
2、连续型:
设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值
为随机变量的数学期望,记为E(X)。即
扩展资料
例题:
在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:
(1)取出的3件产品中一等品件数x的分布列和数学期望;
(2)取出的3件产品中一等品件数多于二等品件数的概率。
解:
x的数学期望E(x)=0*7/24+1*21/40+2*7/40+3*1/120=9/10
参考资料来源:百度百科-数学期望
以上就是数学期望的计算的全部内容,2、 数学期望E的运算公式和性质:公式:如果X、Y独立,则:E(XY)=E(X)*E(Y)。如果不独立,可以用定义计算:先求出X、Y的联合概率密度,再用定义。或者先求出Cov(x,y)再用公式 Cov(X,Y)=E(XY)-E(X)*E(Y),D(X±Y)=D(X)+D(Y)±2*Cov(X,Y)。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。