人教版五年级数学下册重点?五年级下册数学知识要点:第一单元:图形的变换 1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形.这条直线叫做它的对称轴. 2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、那么,人教版五年级数学下册重点?一起来了解一下吧。
图形的变换、因数与倍数、长方体与正方体、分数的意义和性质、分数的加法和减法、统计、数学广角。
复习重点:
1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。
2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。
3、求两个数的最大公因数和最小公倍数。
4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。
5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和计算。
6、在方格纸上画轴对称图形以及将简单图形旋转900
复习难点:
1、在方格纸上将一个简单图形旋转900。
2、分数的意义和基本性质的实际运用。
3、生活中的某些实物的表面积和体积的测量及计算。
4、整数加减法的运算定律推广运用到分数加减法。(尤其是减法的性质的运用)
5、根据具体问题,选择适当的的统计量(平均数、中位数、众数)表示数据的不同特征。
6、对统计图中的数据进行合理分析。
希望能解决您的问题。
人教版五年级下册数学课程中,涵盖了几个关键的知识点,包括因数与倍数的应用题,长方体和正方体的学习,以及分数的运算和实际应用。
在因数与倍数的学习中,学生需要掌握如何找到一个数的因数和倍数,以及如何将一个数分解为质因数。这些问题通常会通过应用题的形式出现,要求学生解决实际生活中的问题。例如,计算一个长方形花坛的面积,需要找到长和宽的因数,从而确定合适的尺寸。
长方体和正方体的学习则是让学生了解三维几何图形的基本特性。学生需要学会如何计算这些图形的表面积和体积,这不仅有助于提高学生的空间想象能力,也为后续学习提供了基础。通过解决实际问题,如计算一个房间的地板面积或一个盒子的体积,学生能够更好地理解这些概念。
分数的运算及其应用则让学生了解分数在日常生活中的重要性。学生需要掌握分数的加减乘除运算,以及如何将分数转化为小数或百分比。通过解决实际问题,如计算一个蛋糕被分成8块,每人吃3块,剩余多少块,学生可以更好地理解分数的应用。
总之,五年级下册的数学课程涵盖了因数与倍数、长方体和正方体、分数的运算及其应用等多个重要知识点。通过学习这些内容,学生不仅能够提高数学能力,还能够更好地理解数学在实际生活中的应用。
有很多五年级同学在复习数学时,复习效率不是很高。下面是由我为大家整理的“五年级下册数学重要知识点归纳总结”,仅供参考,欢迎大家阅读本文。
第一单元 观察物体(三)
1、 不同角度观察一个物体 , 看到的面都是两个或三个相邻的面。
2、 不可能一次看到长方体或正方体相对的面。
注意点
1)这里所说的正面、左面和上面,都是相对于观察者而言的。
2)站在任意一个位置,最多只能看到长方体的3个面。
3)从不同的位置观察物体,看到的形状可能是不同的。
4)从一个或两个方向看到的图形是不能确定立体图形的形状的。
5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。
6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。
第二单元 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。
图形的变换、因数与倍数、长方体与正方体、分数的意义和性质、分数的加法和减法、统计、数学广角。
复习重点:
1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。
2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。
3、求两个数的最大公因数和最小公倍数。
4、分数加减法的意义以及计算方法,把整数加减法的运算定律推广运用到分数加减法。
5、体积和表面积的意义及度量单位,能进行单位间的换算,长方体和正方体表面积和体积的计算方法以及一些生活中的实物的表面积和体积的测量和计算。
6、在方格纸上画轴对称图形以及将简单图形旋转900
复习难点:
1、在方格纸上将一个简单图形旋转900。
2、分数的意义和基本性质的实际运用。
3、生活中的某些实物的表面积和体积的测量及计算。
4、整数加减法的运算定律推广运用到分数加减法。(尤其是减法的性质的运用)
5、根据具体问题,选择适当的的统计量(平均数、中位数、众数)表示数据的不同特征。
6、对统计图中的数据进行合理分析。
五年级下册数学知识要点:
第一单元:图形的变换
1. 轴对称图形:一个图形沿一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。这条直线叫做它的对称轴。
2. 轴对称图形的特征:1、对称点到对称轴的距离相等;2、对应点连线与对称轴互相垂直。
3. 旋转:图形或物体绕着一个点或一条轴运动的现象叫做旋转。
第二单元:因数与倍数
1. 因数和倍数:在整数乘法里,如果a×b=c,那么a和b是c的因数,c是a和b的倍数。
2. 为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。但是0也是整数。
3. 一个数的最小因数是1,最大因数是它本身。一个数的因数的个数是有限的。
4. 一个数的最小倍数是它本身,没有最大的倍数。 一个数的倍数的个数是无限的。
5. 个位上是0、2、4、6、8的数都是2的倍数。个位上是0、5的数都是5的倍数。一个数,每个数位上的数的和是3的倍数,这个数就是3的倍数。
6. 自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
7. 最小的奇数是1,最小的偶数是0。最小的质数是2,最小的合数是4。
8.
四则运算中的奇偶规律:
奇数+奇数=偶数奇数-奇数=偶数奇数×奇数=奇数
偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数
奇数+偶数=奇数奇数-偶数=奇数奇数×偶数=偶数
偶数-奇数=奇数
9. 一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);如果除了1和它本身还有别的因数,这样的数叫做合数。
以上就是人教版五年级数学下册重点的全部内容,复习重点:1、因数与倍数、质数与合数、奇数与偶数等概念以及2、3、5的倍数的特征,以及综合运用这些知识解决实际问题。2、分数的意义和基本性质,以及运用分数的基本性质解决实际问题,熟练地进行约分和通分,分数大小比较,把假分数化成带分数或整数以及整数、小数的互化。3、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。