当前位置: 首页 > 所有学科 > 数学

高中数学函数题,高一函数题型100道

  • 数学
  • 2024-10-31

高中数学函数题?解 (1)由x2+y=1得y=1-x2,它能确定y是x的函数.于任意的x∈{x|x≤1},其函数值不是唯一的.【例2】下列各组式是否表示同一个函数,为什么?解 (1)中两式的定义域部是R,对应法则相同,故两式为相同函数.(2)、那么,高中数学函数题?一起来了解一下吧。

高二函数经典例题

关于幂函数,一定要明白图像。重点记忆第一象限内只求变化的图像就可以。然后通过函数奇偶性得出其它象限图像。偶函数一二象限,奇函数一三象限,非奇非偶函数一象限。然后看图就可以得出值域。

高三数学题可复制

f(x)=f(x)=sinx/2×cosx/2+cos^2x/2-1/2

=1/2sinx+1/2(1+cosx)-1/2

=1/2sinx+1/2cosx

=√2/2(√2/2sinx+√2/2cosx)

=√2/2sin(x+π/4)

∵f(a)=√2/4

∴√2/2sin(a+π/4)=√2/4

∴sin(a+π/4)=1/2

∵a+π/4∈(π/4,5π/4)

∴a+π/4=5π/6

∴a=7π/12

高中数学函数常考题型

解:(Ⅰ)∵f(x)为奇函数,

∴f(-x)=-f(x)

即-ax3-bx+c=-ax3-bx-c

∴c=0

∵f'(x)=3ax2+b的最小值为12

∴b=12

又直线x+18y-7=0的斜率为-1/18

因此,f'(1)=3a+b=18

∴a=2,b=12,c=0.

高中数学讲题视频

第一个:f(a+x)=f(b-x)的对称轴是x=(a+b)/2注意这个是一个轴对称的函数图像,是一个图像先要知道一个关系:如果f(a+x)=f(a-x),那么关于x=a对称并且可以通过令y=a+x可以推论:如果f(x)=f(2a-x),那么关于x=a对称所以我们根据这个道理做变换:令y=a+x,则x=y-a那么f(y)=f[(b+a)-y] 所以对称轴是x=(a+b)/2第二个:函数y=f(a+x)与函数y=f(b-x)的对称轴是x=(b-a)/2注意这个是两个函数图像关于轴对称 ,区别于第一个问题我们知道f(a+x)表示把f(x)向左平移a个单位,而f(b-x)表示把f(x)先关于y轴翻折再向右平移b个单位。这样,图像的形状其实没有改变,并且正好左右对称,不过对称轴不是y轴了,而是x=b与x=-a的中间直线,所以中间的位置表示就是x=(b-a)/2

奥数题6年级超难20道

例1】判断下列各式,哪个能确定y是x的函数?为什么?

(1)x2+y=1

(2)x+y2=1

解 (1)由x2+y=1得y=1-x2,它能确定y是x的函数.

于任意的x∈{x|x≤1},其函数值不是唯一的.

【例2】下列各组式是否表示同一个函数,为什么?

解 (1)中两式的定义域部是R,对应法则相同,故两式为相同函数.

(2)、(3)中两式子的定义域不同,故两式表示的是不同函数.

(4)中两式的定义域都是-1≤x≤1,对应法则也相同,故两式子是相同函数.

【例3】求下列函数的定义域:

【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域:

求实数a的取值范围.

为所求a的取值范围.

【例6】求下列函数的值域:

(1)y=-5x2+1

(3)y=x2-5x+6,x∈[-1,1)

(4)y=x2-5x+6,x∈[-1,3]

(9)y=|x-2|-|x+1|

解 (1)∵x∈R,∴-5x2+1≤1,值域y≤1.

(6)定义域为R

定义域x≠1且x≠2

(y-4)x2-3(y-4)x+(2y-5)=0 ①

当y-4≠0时,∵方程①有实根,∴Δ≥0,

即9(y-4)2-4(y-4)(2y-5)≥0

化简得y2-20y+64≥0,得

y<4或y≥16

当y=4时,①式不成立.

故值域为y<4或y≥16.

函数y在t≥0时为增函数(见图2.2-3).

去掉绝对值符号,

其图像如图2.2-4所示.

由图2.2-4可得值域y∈[-3,3].

说明 求函数值域的方法:

1°观察法:常利用非负数:平方数、算术根、绝对值等.(如例1,2)

2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给定区间[m,n]的值域(或最值),分三种情况考虑:

(如例5)可做公式用.

法求y的范围(如例6-7).

为二次函数求值域.但要注意中间量t的范围(如例6-8).

6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量的范围,求函数y的值域(如例6-6).

7°图像法(如例6-9):

由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根据函数解析式的不同特点灵活用各种方法求解.

解 (2)∵f(-7)=10,∴f[f(-7)]=f(10)=100.

说明 本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段函数值时,要注意在定义域内进行.

【例8】根据已知条件,求函数表达式.

(1)已知f(x)=3x2-1,求①f(x-1),②f(x2).

(2)已知f(x)=3x2+1,g(x)=2x-1,求f[g(x)].

求f(x).

(4)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x).

(5)设周长为a(a>0)的等腰三角形,其腰长为x,底边长为y,试将y表示为x的函数,并求它的定义域和值域.

(1)分析:本题相当于x=x-1时的函数值,用代入法可求得函数表达式.

解 ∵f(x)=3x2-1

∴f(x-1)=3(x-1)2-1=3x2-6x+2

f(x2)=3(x2)2-1=3x4-1

(2)分析:函数f[g(x)]表示将函数f(x)中的x用g(x)来代替而得到的解析式,∴仍用代入法求解.

解 由已知得f[g(x)]=3(2x-1)2+1=12x2-12x+4

法(或观察法).

∴x=(t+1)2代入原式有f(t)=(t+1)2-6(t+1)-7

=t2-4t-12 (t≥-1)

即f(x)=x2-4x-12 (x≥-1)

说明 解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.

(4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解.

解 设f(x)=ax2+bx+c(a≠0)

由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,得恒等式2ax+

说明 待定系数是重要的数学方法,应熟练掌握.

∵2x+y=a,∴y=a-2x为所求函数式.

∵三角形任意两边之和大于第三边,

∴得2x+2x>a,又∵y>0,

说明 求实际问题函数表达式,重点是分析实际问题中数量关系并建立函数解析式,其定义域与值域,要考虑实际问题的意义.

以上就是高中数学函数题的全部内容,-π/2+2kπ 小于等于 -2x+π/4 <小于等于π/2+2kπ,同减去 四分之π,可以得-3π/4+2kπ 小于等于-2x 小于等于 π/4+2kπ;再者同除以 -2, 要注意的是有负号,因此不等号方向改变,可以 得3π/8-kπ 大于等于 x 大于等于-π/8-kπ。最后按照平常的写题习惯。

猜你喜欢