数学论文三年级?那么,数学论文三年级?一起来了解一下吧。
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
阿姨的数学题
我妈妈开了文具店,今天是星期天,妈妈有事,叫我去看店。一会,来了一位阿姨,她说要考考我,才能告诉我买什么,她说:“李辉买了一枝铅笔和一个练习本,一共花了6元。练习本的价钱是铅笔的两倍。铅笔和练习本的单价各是多少钱?”我想了想:练习本和铅笔一共是三倍,只要用6÷3就能求出铅笔的价格,那练习本的价格也能求出来了。我把答案说了出来,阿姨夸我:“能够仔细的分析题目,真不错!”“你这里练习本每本0。6元,作文本每本0。9元,我要买10本,给你8.1元,不用找,你该给我几本练习本,几本作文本?”我想了想说:“先假设10本全是作文本,需要10×0.9=9元,实际付了8.1元,比假设少付了9-8.1=0.9元,实际作文本比练习本多0.9-0.6=0.3元,就可求出练习本是0.9÷0.3=3本,作文本是10-3=7本。”算出来了,阿姨直夸我聪明,我心里美滋滋的,后来阿姨又买来几样文具,结帐时我还沉浸在欢乐之中,结果呢把钱算错了,我没发现,阿姨却对我说:“你呀,一夸你就得意忘形了。把该付的钱的小数点看错了,结果呢我少付15。3元。”“对不起,小数点向左移动了一位,比原来的价格缩小了10倍,相差了9倍,只要15.3÷9=1.7元,由于刚才缩小了10倍,所以要1.7×10=17元。”阿姨又买了几个文具,就走了。
今天,阿姨的数学题被我攻破了,我心想:生活中的数学无处不在,我要更加努力。
数学在学生的眼里应该是单单地学习数数,深一层是解答经济问题,更深一层是对数字做个全面调查,但数学的真正概念是与生活实际相符合,在生活中运用数学,用数学伦理解开谜底,在很多时候数学包含在科学中,数学应是一种思维逻辑。从生活与学习看来,数学对我们是相关重要。因为有了数学,我们认识恒定数量,认识对艺术的计算,如果没有数学,那么我们在社会上就不会存在一种平衡度,没有平衡度就没有拼搏的动力,没有动力自然没有了进步和发展。数学给我们思维逻辑方向,如果没有简单的数学,可能推理不出物理,化学等理科,数学是理科的基础,那么光光靠其他的文科,人们的大脑就像被锁住,没有了一个方向。这样说明了数学也是一门重要的科目。
数学发展到现代,分裂为两个方向,纯粹数学和应用数学。弗雷格是前者的代表人物。之前的数学的任务是计算,通过计算来解决问题,到了19世纪,随着数学抽象程度的增加,数学的任务变成了理解。当然这只是数学发展的一个方向,即纯粹数学的方向;之后,一般人不再弄得懂专业的数学,而数学的堂奥之处留给了专家。弗雷格要解决的问题是,从逻辑中推出数学,即给数学一个稳固的基础。他认为,“许多过去被看做是不证自明的东西,现在都需要证明。” 数学也是如此。凡是可以证明的地方,就必须通过证明而不是归纳来确证。弗雷格给自己的任务是,给数下一个定义,尽管过去人们以为它是不可定义的。康德认为,数学命题是先天综合命题。而弗雷格不这么认为,他指出,数学是分析命题。但是他同时认为,康德关于分析与综合的区分不足以穷尽所有命题。因为,可以找出一个句子,它并不包含在任何个别的定义之中,却可以从所有定义中逻辑地推出。那它就既不是分析判断也不是综合判断。事实上,康德低估了分析判断的价值,它并非不告诉我们什么。在这个意义上,数学是分析命题。下面简单地谈一下弗雷格的正面立论。他认为,每个个别的数都是一个独立的对象。首先,他说明了数的给出包含着对一个概念的陈述。在“0这个数属于F这个概念”这个句子中,如果我们把F这个概念看成实实在在的主词,那么0只是谓词的一部分。如果把0、1、2这样的数看做概念的性质可能会改变它的意谓。比如在“木星有四颗卫星”这一描述中,“四”表面上是作为定语,事实上,更为准确的描述是“木星的卫星数是四”。这里,“是”的含义是“是与……相等”、“是与……同一”。这种等式形式是算术中的主要形式。所以,个别的数表现为独立的对象。然而,这种想法的困难是我们无法对数形成表象。弗雷格的反驳是,我们同样也无法形成我们与太阳的距离的表象,但这并不说明发现这一距离所依据的计算的正确性是不可靠的。当然,这一类比式的反驳可能没有那么大的说服力。弗雷格进一步指出,“通过思维我们甚至常常超出可以形成表象的东西之外,而不因此失去我们推论的基础。” 因此,表象与被思考的东西之间的联系可以是完全表面的,任意的和依据习惯的。就算我们无法对一个词的内涵形成表象,但这并非否定一个词的意谓。事实上,只有在完整的句子中词才有意谓,而数的独立性并不意谓数词脱离句子联系而表示某种东西。“如果句子作为整体有一个意义,就足够了;这样句子的诸部分也就得到它们的内涵。” 最后,弗雷格指出,认为数不是一个空间对象,这并不表明它不是一个对象。并非每个客观的对象都有一个空间位置。总之,他试图表明,数作为独立的对象是可能的。这是他关于数的定义的一个初始的考虑。弗雷格的策略是对数本身的一种拯救。当先贤们把数抛入世界之中,数总是与世界纠缠在一起。特别是到了康德,数开始和人类认识世界的能力打交道。弗雷格所做的工作是证明数的独立性,数可以成为一个对象,尽管它和别的对象不大一样。尽管数可以成为世界中的秩序或规律,但它不必然如此。所以,弗雷格为数找到了它自己的居所(尽管不是空间)。
以上就是数学论文三年级的全部内容,.。