当前位置: 首页 > 所有学科 > 数学

西方数学知识,数学理论有哪些

  • 数学
  • 2024-05-28

西方数学知识?1634年编成的《崇祯历书》中,也介绍了大量的西方数学方法,将西方平面三角学、球形三角学传入中国。汤若望也编写了《几何要法》和《新法算术》等数学著作。在17世纪的中国,计算工具共有4种:珠算、笔算、筹算、尺算,后三种都是从西方传来的。那么,西方数学知识?一起来了解一下吧。

介绍西方数学的著作

哥德巴赫猜想

大约在250年前,德国数字家哥德巴赫发现了这样一个现象:任何大于5的整数都可以表示为3个质数的和。他验证了许多数字,这个结论都是正确的。但他却找不到任何办法从理论上彻底证明它,于是他在1742年6月7日写信和当时在柏林科学院工作的著名数学家欧拉请教。欧拉认真地思考了这个问题。他首先逐个核对了一张长长的数字表:

6=2+2+2=3+3

8=2+3+3=3+5

9=3+3+3=2+7

10=2+3+5=5+5

11=5+3+3

12=5+5+2=5+7

99=89+7+3

100=11+17+71=97+3

101=97+2+2

102=97+2+3=97+5

……

这张表可以无限延长,而每一次延长都使欧拉对肯定哥德巴赫的猜想增加了信心。而且他发现证明这个问题实际上应该分成两部分。即证明所有大于2的偶数总能写成2个质数之和,所有大于7的奇数总能写成3个质数之和。当他最终坚信这一结论是真理的时候,就在6月30日复信给哥德巴赫。信中说:"任何大于2的偶数都是两个质数的和,虽然我还不能证明它,但我确信无疑这是完全正确的定理"由于欧拉是颇负盛名的数学家、科学家,所以他的信心吸引和鼓舞无数科学家试图证明它,但直到19世纪末也没有取得任何进展。

西方文化中的数学

西方文化中的数学,本书的目的是为了阐明这样一个观点: 在西方文明中,数学一直是一种主要的文化力量。本书将主要考察数学思想如何影响了直到20世纪的人类生活和思想。全书将按照历史的顺序对数学思想进行考察,因此本书涉及的内容将从古巴比伦、古埃及开始,一直到现代的相对论。有人可能会对有关早期历史的材料提出疑问。然而,现代文化是许多早期文明的积累和综合。首先意识到数学理性力量的希腊人,他们虔敬地认为诸神在设计宇宙时利用了数学,并且极力敦促人类去揭示这种设计的图式。希腊人不仅在他们的文明中给予数学以重要的位置,而且首先创造了对人类文化有深刻影响的数学思想的榜样。当那些后续文明将古希腊人的成果传递到现代时,它们又不断赋予数学以更有意义的新功能。现在,数学的这些功能和影响已深深地嵌入我们的文化之中。即使是现代数学的成就,也可以根据先前业已存在的数学知识而给予最恰当的评价。

西方数学

东风数学主要特征:1具有实用性,有较强的社会性;2算法程序化模型化;3寓理与算并且是开放的归纳系统

西方数学主要特征:1封闭的逻辑演绎体系季节化的算法;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义

希腊人在数学上的贡献主要是创立了平面几何,立体几何,平面与球面三角,数论。推广了算数与代数。

东方数学注重实用性社会性,使数学与我们的生活密切联系,二者都推动了现代数学的发展,都开创了数学的先河。(完)

数学百科全书

毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,万物按照一定的数量比例而构成和谐的秩序;由此他们提出了“美是和谐”的观点,认为音乐的和谐是由高低长短轻重不同的音调按照一定的数量上的比例组成,“音乐是对立因素的和谐的统一,把杂多导致统一,把不协调导致协调。”这是古希腊艺术辩证法思想的萌芽,也包含着艺术中“寓整齐于变化”的普遍原则。

全球数学专业排名

希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约当公元前7世纪中叶到公元前3世纪;第二期是亚历山大前期,从欧几里得起到公元前146年希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期,结束于641年亚历山大被阿拉伯人占领。

古希腊地图

这里谈谈第一个时期的学派:

毕达哥拉斯学派

毕达哥拉斯公元前580年左右生于萨摩斯(今希腊东部小岛)。为了摆脱暴政,移居意大利半岛南部的克罗顿。在那里组织一个政治、宗教、哲学、数学合一的秘密团体。后来在政治斗争中遭到破坏,毕达哥拉斯被杀害,但他的学派还继续存在两个世纪(约公元前500~前300)之久。这个学派企图用数来解释一切,不仅仅认为万物都包含数,而且说万物都是数。

毕达哥拉斯

他们以发现勾股定理(西方叫做毕达哥拉斯定理)闻名于世,又由此导致不可通约量的发现。这个学派还有一个特点,就是将算术和几何紧密联系起来。他们找到用三个正整数表示直角三角形三边长的一种公式,又注意到从1起连续的奇数和必为平方数等等,这既是算术问题,又和几何有关。他们还发现五种正多面体。在天文方面,首创地圆说,认为日、月、五星都是球体,浮悬在太空中。

以上就是西方数学知识的全部内容,东风数学主要特征:1具有实用性,有较强的社会性;2算法程序化模型化;3寓理与算并且是开放的归纳系统 西方数学主要特征:1封闭的逻辑演绎体系季节化的算法;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义 希腊人在数学上的贡献主要是创立了平面几何,立体几何。

猜你喜欢