期末满分卷数学答案?19.计算(本题满分10分) (1) (2) 20.解下列方程(本题满分10分) (1) (2) 21.(本题满分8分) (1)化简后再求值: ,其中 、、 满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因。那么,期末满分卷数学答案?一起来了解一下吧。
七年级数学期末考试当前,不到最后时刻,永远不要放弃;以下是我为大家整理的初一数学上册期末试卷,希望你们喜欢。
初一数学上册期末试题
(满分:100分 考试时间:100分钟)
注意:
1.选择题答案请用2B铅笔填涂在答题卡相应位置上.
2.非选择题答案必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.
一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.-2的相反数是( )
A.2 B.-2 C. 12 D.-12
2.2015年南京国际马拉松全程约为42 195米,将42 195用科学记数法表示为( )
A.42.195×103 B.4.2195×104 C.42.195×104 D.4.2195×105
3.下列各组单项式中,同类项一组的是( )
A.3x2y与3xy2 B.2abc与-3ac C.2xy与2ab D.-2xy与3yx
4.如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′处,若∠1=56°,则∠DEF的度数是( )
A.56° B.62° C.68° D.124°
5.如图所示,将图中阴影三角形由甲处平移至乙处,下面平移方法中正确的是( )
A.先向上移动1格,再向右移动1格 B.先向上移动3格,再向右移动1格
C.先向上移动1格,再向右移动3格 D.先向上移动3格,再向右移动3格
6.我们用有理数的运算研究下面问题.规定:水位上升为正,水位下降为负;几天后为正,几天前为负.如果水位每天下降4cm,那么3天后的水位变化用算式表示正确的是( )
A.(+4)×(+3) B.(+4)×(-3) C.(-4)×(+3) D.(-4)×(-3)
7.有理数a在数轴上的位置如图所示,下列各数中,可能在0到1之间的是( )
A.-a B.│a│
C.│a│-1 D.a+1
8.如图,一个几何体上半部为正四棱锥,下半部为正方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是( )
二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷相应位置上)
9.单项式-12a2b的系数是 ▲ .
10.比较大小:-π ▲ - 3.14. (填“<”、“=”或“>”)
11.若∠1=36°30′,则∠1的余角等于 ▲ °.
12.已知关于x的一元一次方程3m-4x=2的解是x=1,则m的值是 ▲ .
13.下表是同一时刻4个城市的国际标准时间,那么北京与多伦多的时差为 ▲ h.
城市 伦敦 北京 东京 多伦多
国际标准时间 0 +8 +9 -4
14.写出一个主视图、左视图和俯视图完全相同的几何体: ▲ .
15.2015年12月17日,大报恩寺遗址公园正式向社会开放.经物价部门核准,旅游旺季门票价格上浮40%,上浮后的价格为168元.若设大报恩寺门票价格为x元,则根据题意可列方程 ▲ .
16.若2a-b=2,则6-8a+4b = ▲ .
17.已知线段AB=6 cm,AB所在直线上有一点C, 若AC=2BC,
则线段AC的长为 ▲ cm.
18.如图,在半径为 a 的大圆中画四个直径为 a 的小圆,则图中
阴影部分的面积为 ▲ (用含 a 的代数式表示,结果保留π).
三、解答题(本大题共9小题,共64分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
19.(8分)计算:
(1)(12-712+56)×36; (2)-32+16÷(-2)×12.
20.(6分)先化简,再求值:2(3a2b-ab2)-(-ab2+2a2b),其中a=2、b=-1.
21.(8分)解方程:
(1)3(x+1)=9; (2) 2x-13 =1- 2x-16.
22.(6分)读句画图并回答问题:
(1)过点A画AD⊥BC,垂足为D.比较AD与AB的大小:AD ▲ AB;
(2)用直尺和圆规作∠CDE,使∠CDE=∠ABC,且与AC交于点E.此时DE与AB的位置关系是
▲ .
23.(6分)一个几何体的三个视图如图所示(单位:cm).
(1)写出这个几何体的名称: ▲ ;
(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.
24.(6分)下框中是小明对课本P108练一练第4题的解答.
请指出小明解答中的错误,并写出本题正确的解答.
25.(8分)如图,直线AB、CD 相交于点O,OF平分∠AOE ,OF⊥CD,垂足为O.
(1)若∠AOE=120°,求∠BOD的度数;
(2)写出图中所有与∠AOD互补的角: ▲ .
26.(8分)如图,点A、B分别表示的数是6、-12,M、N、P为数轴上三个动点,它们同时都向右运动.点M从点A出发,速度为每秒2个单位长度,点N从点B出发,速度为点M的3倍,点P从原点出发,速度为每秒1个单位长度.
(1)当运动3秒时,点M、N、P分别表示的数是 ▲ 、 ▲ 、 ▲ ;
(2)求运动多少秒时,点P到点M、N的距离相等?
27.(8分)钟面角是指时钟的时针与分针所成的角.如图,图①、图②、图③三个钟面上的时刻分别记录了某中学的早晨上课时间7:30、中午放学时间11:50、下午放学时间17:00.
(1)分别写出图中钟面角的度数:∠1= ▲ °、∠2= ▲ °、∠3= ▲ °;
(2)在某个整点,钟面角可能会等于90°,写出可能的一个时刻为 ▲ ;
(3)请运用一元一次方程的知识解决问题:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是多少?
初一数学上册期末试卷参考答案
一、选择题(每小题2分,共计16分)
题号 1 2 3 4 5 6 7 8
答案 A B D B B C C D
二、填空题(每小题2分,共计20分)
9.-12 10.< 11.53.5 12.2 13.12
14.正方体(答案不唯一) 15.(1+40%) x=168 16.-2
17.4或12 18.πa2-2a2
三、解答题(本大题共9题,共计64分)
19.(8分)
解:(1)原式=12×36-712×36+56×36 1分
=18-21+30 3分
=27. 4分
(2)原式=-9+16×(-12)×12 2分
=-9-4 3分
=-13. 4分
20.(6分)
解: 原式=6a2b-2ab2+ab2-2a2b 2分
=4a2b-ab2. 4分
当a=2、b=-1时,
原式=4×22×(-1)-2×(-1)2=-16-2=-18. 6分
21.(8分)
解:(1)3x+3=9. 1分
3x=6. 3分
x=2. 4分
(2)2(2x-1)=6-(2x-1). 1分
4x-2=6-2x+1. 2分
6x=9. 3分
x=32. 4分
22.(6分)
解:
(1)画图正确,AD
(2)画图正确,DE∥AB. 6分
23.(6分)
解:(1)长方体; 2分
(2)2×(3×3+3×4+3×4)=66 cm2. 6分
答:这个几何体的表面积是66 cm2.
24.(6分)
解:小明的错误是“他设中的x和方程中的x表示的意义不同”. 2分
正确的解答:设这个班共有x名学生.
根据题意,得 x6-x8=2. 4分
解这个方程,得 x=48. 5分
答:这个班共有48名学生. 6分
25.(8分)
解:
(1)因为OF平分∠AOE,∠AOE=120°,
所以∠AOF=12∠AOE=60°. 2分
因为OF⊥CD,
所以∠COF=90°. 3分
所以∠AOC=∠COF-∠AOF=30°. 4分
因为∠AOC和∠BOD是对顶角,
所以∠BOD=∠AOC=30°. 5分
(2)∠AOC、∠BOD、∠DOE. 8分
26.(8分)
解:(1)12、6、3; 3分
(2)设运动t秒后,点P到点M、N的距离相等.
①若P是MN的中点,则t-(-12+6t)=6+2t-t,
解得t=1. 6分
②若点M、N重合,则-12+6t=6+2t,
解得t=92. 8分
答:运动1或92秒后,点P到点M、N的距离相等.
27.(8分)
解:(1)45,55,150; 3分
(2)如:3点;(答案不唯一) 4分
(3)设从7:30开始,经过x分钟,钟面角等于90°.
根据题意,得6x-0.5x-45=90. 6分
解得 . 7分
答:钟面上,在7:30~8:00之间,钟面角等于90°的时刻是7:54611. 8分

这篇关于人教版小学数学五年级下册期末试卷附答案,是特地为大家整理的,希望对大家有所帮助!
一、看清题目,巧思妙算。(共28分)
1、直接写出得数:(4分)
37 + 27 = 23 - 16 = 0.32×99 + 0.32= 0.25= ( )( )
1- 56 = 13 + 14 = 25×0.07×4= 5 14 = ( )( )
2、求下列各组数的公因数与最小公倍数,在()里写每组的公因数,在[]里写每组的最小公倍数。(4分)
8和12 11和 33
( ) ( )
[ ] [ ]
3、解方程:(8分)
X- 56 = 56 8X = 4 X÷12.5 = 8 12.7+ X = 15.7
3、计算下列各题,能简算的要简算。(12分)
23 + 45 - 310 118 - ( 56 + 38 )
67 -( 1114 - 12 ) 59 + 411 + 611 + 49
【命题意图:本册教材在计算方面主要学习的是解方程、异分母分数加减法。所以本大题主要安排了解方程、异分母分数加减法以及相应的简算,同时也穿插了小数的加减乘除、求公因数和最小公倍数等。本大题主要目的是考查学生对本册计算内容的掌握程度以及灵活计算的能力和意识。
成绩好坏,不足为怪,只要努力,无愧天地!祝你八年级数学期末考试取得好成绩,期待你的成功!下面是我为大家整编的湘教版八年级上册数学期末测试卷,大家快来看看吧。
湘教版八年级上册数学期末测试题
一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)
1.下列分式中,是最简分式的是()
A. B.
C. D.
2.当分式 的值为0时,字母x的取值应为()
A.﹣1 B.1 C.﹣2 D.2
3.下列计算正确的是()
A.2﹣3=﹣8 B.20=1 C.a2•a3=a6 D.a2+a3=a5
4.(﹣8)2的立方根是()
A.4 B.﹣4 C.8 D.﹣8
5.若代数式 有意义,则x必须满足条件()
A.x≠﹣ B.x> C.x>﹣ D.x≥﹣
6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()
A.50°,80° B.65°,65°
C.50°,80°或65°,65° D.无法确定
7.下列命题是假命题的是()
A.实数与数轴上的点一一对应
B.如果两个数的绝对值相等,那么这两个数必定也相等
C.对顶角相等
D.三角形的重心是三角形三条中线的交点
8.下列长度的三根线段,能构成三角形的是()
A.3cm,10cm,5cm B.4cm,8cm,4cm
C.5cm,13cm,12cm D.2cm,7cm,4cm
9.不等式组 的解集为()
A.x>﹣1 B.x≤3 C.1
10.计算 ÷ × 的结果估计在()
A.5至6之间 B.6至7之间 C.7至8之间 D.8至9之间
11.已知关于x的方程 ﹣ =0的增根是1,则字母a的取值为()
A.2 B.﹣2 C.1 D.﹣1
12.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()
A.有一个内角大于60° B.有一个内角小于60°
C.每一个内角都大于60° D.每一个内角都小于60°
二、填空题(每小题3分,共6小题,满分18分)
13.最小刻度为0.2nm(1nm=10﹣9m)的钻石标尺,可以测量的距离小到不足头发丝直径的十万分之一,这也是目前世界上刻度最小的标尺,用科学记数法表示这一最小刻度为m.
14.分式方程 =﹣4的解是x=.
15.计算: • =.
16.如图,将三角尺的直角顶点放在直尺的一边上,使∠1=60°,∠2=100°,则∠3=°.
17.如图,已知∠BAC=∠DAC,则再添加一个条件,可使△ABC≌△ADC.
18.如图,已知在△ABC中,AB=7,BC=6,AC的垂直平分线DE交AC于点E,交AB于点D,连接CD,则△BCD的周长为.
三、解答题:(19题每小题8分,20题6分,满分14分)
19.(1)计算: ﹣
(2)计算:(2 ﹣5 )﹣( ﹣ )
20.解下列不等式 ≤ ﹣1,并将解集在数轴上表示出来.
四、分析与说理:(每小题8分,共2小题,满分16分)
21.已知:如图所示,AB=AC,CE与BF相交于点D,且BD=CD.求证:DE=DF.
22.已知:如图所示,在边长为4的等边△ABC中,AD为BC边上的中线,且AD=2 ,以AD为一边向左作等边△ADE.
(1)求:△ABC的面积;
(2)判断AB与DE的位置关系是什么?请予以证明.
五、实践与应用(每小题8分,共2小题,满分16分)
23.已知北海到南宁的铁路长210千米.动车投入使用后,其平均速度达到了普通火车的平均速度的3倍,这样由北海到南宁的行驶时间缩短了1.75小时.求普通火车的平均速度是多少?(列方程解答)
24.张华老师揣着200元现金到星光文具店购买学生期末考试的奖品.他看好了一种笔记本和一种钢笔,笔记本的单价为每本5元,钢笔的单价为每支2元.张老师计划购买两种奖品共50份,求他最多能买笔记本多少本?(列不等式解答)
六、阅读与探究(每小题10分,共2小题,满分20分)
25.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.
例如:
= = = =|1+ |=1+
解决问题:
①在括号内填上适当的数:
= = = =||=
②根据上述思路,试将 予以化简.
26.已知:在△ABC中,∠BAC=90°,∠ABC=45°,点D为线段BC上一动点(点D不与B、C重合),以AD为边向右作正方形ADEF,连接FC,探究:无论点D运动到何处,线段FC、DC、BC三者的长度之间都有怎样的数量关系?请予以证明.
湘教版八年级上册数学期末测试卷参考答案
一、选择题(每小题3分,共12小题,满分36分.请把表示正确答案的字母填入下表中对应的题号下.)
1.下列分式中,是最简分式的是()
A. B.
C. D.
【考点】最简分式.
【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.
【解答】解:A、 的分子、分母都不能再分解,且不能约分,是最简分式;
B、 ,不是最简分式;
C、 ,不是最简分式;
D、 ,不是最简分式;
故选A
2.当分式 的值为0时,字母x的取值应为()
A.﹣1 B.1 C.﹣2 D.2
【考点】分式的值为零的条件.
【分析】直接利用分式的值为零,则分子为零,且分母不为零,进而得出答案.
【解答】解:由题意,得
x+2=0且x﹣1≠0,
解得x=﹣2,
故选:C.
3.下列计算正确的是()
A.2﹣3=﹣8 B.20=1 C.a2•a3=a6 D.a2+a3=a5
【考点】同底数幂的乘法;合并同类项;零指数幂;负整数指数幂.
【分析】根据同底数幂的乘法,零次幂,负整数指数幂,可得答案.
【解答】解:A、2﹣3= = ,故A错误;
B、20=1,故B正确;
C、a2•a3=a2+3=a5,故C错误;
D、不是同底数幂的乘法指数不能相加,故D错误;
故选:B.
4.(﹣8)2的立方根是()
A.4 B.﹣4 C.8 D.﹣8
【考点】立方根.
【分析】先求出(﹣8)2,再利用立方根定义即可求解.
【解答】解:∵(﹣8)2=64,64的立方根是4,
∴(﹣8)2的立方根是4.
故选:A.
5.若代数式 有意义,则x必须满足条件()
A.x≠﹣ B.x> C.x>﹣ D.x≥﹣
【考点】二次根式有意义的条件.
【分析】二次根式的被开方数是非负数.
【解答】解:依题意得:2x+1≥0,
解得x≥﹣ .
故选:D.
6.已知一个等腰三角形的一个内角是50°,则这个等腰三角形的另外两个内角度数分别是()
A.50°,80° B.65°,65°
C.50°,80°或65°,65° D.无法确定
【考点】等腰三角形的性质.
【分析】本题可根据三角形的内角和定理求解.由于50°角可能是顶角,也可能是底角,因此要分类讨论.
【解答】解:当50°是底角时,顶角为180°﹣50°×2=80°,
当50°是顶角时,底角为÷2=65°.
故这个等腰三角形的另外两个内角度数分别是50°,80°或65°,65°.
故选:C.
7.下列命题是假命题的是()
A.实数与数轴上的点一一对应
B.如果两个数的绝对值相等,那么这两个数必定也相等
C.对顶角相等
D.三角形的重心是三角形三条中线的交点
【考点】命题与定理.
【分析】根据实数与数轴的关系,绝对值的性质,对顶角相等以及三角形重心的定义对各选项分析判断即可得解.
【解答】解:A、实数与数轴上的点一一对应,是真命题,故本选项错误;
B、如果两个数的绝对值相等,那么这两个数必定也相等,是假命题,应为如果两个数的绝对值相等,那么这两个数必定也相等或互为相反数,故本选项正确;
C、对顶角相等,是真命题,故本选项错误;
D、三角形的重心是三角形三条中线的交点,是真命题,故本选项错误.
故选B.
8.下列长度的三根线段,能构成三角形的是()
A.3cm,10cm,5cm B.4cm,8cm,4cm
C.5cm,13cm,12cm D.2cm,7cm,4cm
【考点】三角形三边关系.
【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行进行逐一分析即可.
【解答】解:根据三角形的三边关系,得
A、5+3<10,不能组成三角形,不符合题意;
B、4+4=8,不能够组成三角形,不符合题意;
C、12+5>13,能够组成三角形,符合题意;
D、2+4<8,不能够组成三角形,不符合题意.
故选:C.
9.不等式组 的解集为()
A.x>﹣1 B.x≤3 C.1
【考点】解一元一次不等式组.
【分析】先求出每个不等式的解集,再求出不等式组的解集即可.
【解答】解: ,
∵解不等式①得:x>﹣1,
解不等式②得:x≤3,
∴不等式组的解集为﹣1
故选D.
10.计算 ÷ × 的结果估计在()
A.5至6之间 B.6至7之间 C.7至8之间 D.8至9之间
【考点】估算无理数的大小.
【分析】利用二次根式的乘除法得到原式= ,然后根据算术平方根的定义得到 < < .
【解答】解:原式= = ,
因为 < < ,
所以6< <7.
故选B.
11.已知关于x的方程 ﹣ =0的增根是1,则字母a的取值为()
A.2 B.﹣2 C.1 D.﹣1
【考点】分式方程的增根.
【分析】去分母得出整式方程,把x=1代入整式方程,即可求出答案.
【解答】解: ﹣ =0,
去分母得:3x﹣(x+a)=0①,
∵关于x的方程 ﹣ =0的增根是1,
∴把x=1代入①得:3﹣(1+a)=0,
解得:a=2,
故选A.
12.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中()
A.有一个内角大于60° B.有一个内角小于60°
C.每一个内角都大于60° D.每一个内角都小于60°
【考点】反证法.
【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
【解答】解:反证法证明命题“三角形中至少有一个角大于或等于60°”时,
首先应假设这个三角形中每一个内角都小于60°,
故选:D.

小学六年级上册数学期末考试卷
(时间100分钟,满分100分) 得分___________
一、填空(共20分,其中第1题、第2题各2分,其它每空1分)
1、3吨=( )吨( )千克 70分=( )小时。
2、( )∶( )==80%=( )÷40
3、( )吨是30吨的,50米比40米多( )%。
4、六(1)班今天出勤48人,有2人因病请假,今天六(1)班学生的出勤率是( )。
5、0.8:0.2的比值是( ),最简整数比是( )
6、某班学生人数在40人到50人之间,男生人数和女生人数的比是5∶6,这个班有男生( )人,女生( )人。
7、从甲城到乙城,货车要行5小时,客车要行6小时,货车的速度与客车的速度的最简比是()。
8、王师傅的月工资为2000元。
按照国家的新税法规定,超过1600元的部分应缴5%个人所得税。
王师傅每月实际工资收入是( )元。
9、小红小时行千米,她每小时行()千米,行1千米要用( )小时。
10、用一根长12.56米的绳子围成一个圆,这个圆的直径是( ),面积是( )。
11、在一块长10分米、宽5分米的长方形铁板上,最多能截取( )个直径是2分米的圆形铁板。
12、请你根据图形对称轴的条数按照从多到少的顺序,在括号里填上适当的图形名称。
读书是一种清福,这种境界被吴延康说得直白:“读书身健即是福,种树开花亦是缘。”好一个读书人,好一片读书的心境。我们不是哲学家,能从一滴水中看世界,从一朵花中参悟人生,但我们可以像吴延康这样,静静地做个读书人,在一片芸芸众生里感悟人生收获快乐。下面给大家分享一些关于初二数学期末试卷及答案浙教版,希望对大家有所帮助。
一、选择题(每小题3分,9小题,共27分)
1.下列图形中轴对称图形的个数是()
A.1个B.2个C.3个D.4个
【考点】轴对称图形.
【分析】根据轴对称图形的概念求解.
【解答】解:由图可得,第一个、第二个、第三个、第四个均为轴对称图形,共4个.
故选D.
【点评】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
2.下列运算不正确的是()
A.x2?x3=x5B.(x2)3=x6C.x3+x3=2x6D.(﹣2x)3=﹣8x3
【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.
【分析】本题考查的知识点有同底数幂乘法法则,幂的乘方法则,合并同类项,及积的乘方法则.
【解答】解:A、x2?x3=x5,正确;
B、(x2)3=x6,正确;
C、应为x3+x3=2x3,故本选项错误;
D、(﹣2x)3=﹣8x3,正确.
故选:C.
【点评】本题用到的知识点为:
同底数幂的乘法法则:底数不变,指数相加;
幂的乘方法则为:底数不变,指数相乘;
合并同类项,只需把系数相加减,字母和字母的指数不变;
积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.
3.下列关于分式的判断,正确的是()
A.当x=2时,的值为零
B.无论x为何值,的值总为正数
C.无论x为何值,不可能得整数值
D.当x≠3时,有意义
【考点】分式的值为零的条件;分式的定义;分式有意义的条件.
【分析】分式有意义的条件是分母不等于0.
分式值是0的条件是分子是0,分母不是0.
【解答】解:A、当x=2时,分母x﹣2=0,分式无意义,故A错误;
B、分母中x2+1≥1,因而第二个式子一定成立,故B正确;
C、当x+1=1或﹣1时,的值是整数,故C错误;
D、当x=0时,分母x=0,分式无意义,故D错误.
故选B.
【点评】分式的值是正数的条件是分子、分母同号,值是负数的条件是分子、分母异号.
4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()
A.﹣20B.﹣16C.16D.20
【考点】因式分解-十字相乘法等.
【专题】计算题.
【分析】把分解因式的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m的值即可.
【解答】解:x2+mx+36=(x﹣2)(x﹣18)=x2﹣20x+36,
可得m=﹣20,
故选A.
【点评】此题考查了因式分解﹣十字相乘法,熟练掌握十字相乘的方法是解本题的关键.
5.若等腰三角形的周长为26cm,一边为11cm,则腰长为()
A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对
【考点】等腰三角形的性质.
【分析】分边11cm是腰长与底边两种情况讨论求解.
【解答】解:①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=(26﹣11)=7.5cm,
所以,腰长是11cm或7.5cm.
故选C.
【点评】本题考查了等腰三角形的性质,难点在于要分情况讨论.
6.如图,在△ABC中,AB=AC,∠BAC=108°,点D在BC上,且BD=AB,连接AD,则∠CAD等于()
A.30°B.36°C.38°D.45°
【考点】等腰三角形的性质.
【分析】根据等腰三角形两底角相等求出∠B,∠BAD,然后根据∠CAD=∠BAC﹣∠BAD计算即可得解.
【解答】解:∵AB=AC,∠BAC=108°,
∴∠B=(180°﹣∠BAC)=(180°﹣108°)=36°,
∵BD=AB,
∴∠BAD=(180°﹣∠B)=(180°﹣36°)=72°,
∴∠CAD=∠BAC﹣∠BAD=108°﹣72°=36°.
故选B.
【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,等边对等角的性质,熟记性质并准确识图是解题的关键.
7.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()
A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE
【考点】全等三角形的性质.
【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.
【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,
∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,
故A、B、C正确;
AD的对应边是AE而非DE,所以D错误.
故选D.
【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.
8.计算:(﹣2)2015?()2016等于()
A.﹣2B.2C.﹣D.
【考点】幂的乘方与积的乘方.
【分析】直接利用同底数幂的乘法运算法则将原式变形进而求出答案.
【解答】解:(﹣2)2015?()2016
=[(﹣2)2015?()2015]×
=﹣.
故选:C.
【点评】此题主要考查了积的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.
9.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有()
A.1个B.2个C.3个D.4个
【考点】等腰三角形的判定.
【分析】根据△OAB为等腰三角形,分三种情况讨论:①当OB=AB时,②当OA=AB时,③当OA=OB时,分别求得符合的点B,即可得解.
【解答】解:要使△OAB为等腰三角形分三种情况讨论:
①当OB=AB时,作线段OA的垂直平分线,与直线b的交点为B,此时有1个;
②当OA=AB时,以点A为圆心,OA为半径作圆,与直线b的交点,此时有1个;
③当OA=OB时,以点O为圆心,OA为半径作圆,与直线b的交点,此时有2个,
1+1+2=4,
故选:D.
【点评】本题主要考查了坐标与图形的性质及等腰三角形的判定;分类讨论是解决本题的关键.
二、填空题(共10小题,每小题3分,满分30分)
10.计算(﹣)﹣2+(π﹣3)0﹣23﹣|﹣5|=4.
【考点】实数的运算;零指数幂;负整数指数幂.
【专题】计算题;实数.
【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.
【解答】解:原式=16+1﹣8﹣5=4,
故答案为:4
【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
11.已知a﹣b=14,ab=6,则a2+b2=208.
【考点】完全平方公式.
【分析】根据完全平方公式,即可解答.
【解答】解:a2+b2=(a﹣b)2+2ab=142+2×6=208,
故答案为:208.
【点评】本题考查了完全平方公式,解决本题德尔关键是熟记完全平方公式.
12.已知xm=6,xn=3,则x2m﹣n的值为12.
【考点】同底数幂的除法;幂的乘方与积的乘方.
【分析】根据同底数幂的除法法则:底数不变,指数相减,进行运算即可.
【解答】解:x2m﹣n=(xm)2÷xn=36÷3=12.
故答案为:12.
【点评】本题考查了同底数幂的除法运算及幂的乘方的知识,属于基础题,掌握各部分的运算法则是关键.
13.当x=1时,分式的值为零.
【考点】分式的值为零的条件.
【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.
【解答】解:x2﹣1=0,解得:x=±1,
当x=﹣1时,x+1=0,因而应该舍去.
故x=1.
故答案是:1.
【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
14.(1999?昆明)已知一个多边形的内角和等于900°,则这个多边形的边数是7.
【考点】多边形内角与外角.
【分析】根据多边形的内角和计算公式作答.
【解答】解:设所求正n边形边数为n,
则(n﹣2)?180°=900°,
解得n=7.
故答案为:7.
【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
15.如图,在ABC中,AP=DP,DE=DF,DE⊥AB于E,DF⊥AC于F,则下列结论:
①AD平分∠BAC;②△BED≌△FPD;③DP∥AB;④DF是PC的垂直平分线.
其中正确的是①③.
【考点】全等三角形的判定与性质;角平分线的性质;线段垂直平分线的性质.
【专题】几何图形问题.
【分析】根据角平分线性质得到AD平分∠BAC,由于题目没有给出能够证明∠C=∠DPF的条件,无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,先根据等腰三角形的性质可得∠PAD=∠ADP,进一步得到∠BAD=∠ADP,再根据平行线的判定可得DP∥AB.
【解答】解:∵DE=DF,DE⊥AB于E,DF⊥AC于F,
∴AD平分∠BAC,故①正确;
由于题目没有给出能够证明∠C=∠DPF的条件,只能得到一个直角和一条边对应相等,故无法根据全等三角形的判定证明△BED≌△FPD,以及DF是PC的垂直平分线,故②④错误;
∵AP=DP,
∴∠PAD=∠ADP,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BAD=∠ADP,
∴DP∥AB,故③正确.
故答案为:①③.
【点评】考查了全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质,等腰三角形的性质和平行线的判定,综合性较强,但是难度不大.
16.用科学记数法表示数0.0002016为2.016×10﹣4.
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:0.0002016=2.016×10﹣4.
故答案是:2.016×10﹣4.
【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
17.如图,点A,F,C,D在同一直线上,AF=DC,BC∥EF,要判定△ABC≌△DEF,还需要添加一个条件,你添加的条件是EF=BC.
【考点】全等三角形的判定.
【专题】开放型.
【分析】添加的条件:EF=BC,再根据AF=DC可得AC=FD,然后根据BC∥EF可得∠EFD=∠BCA,再根据SAS判定△ABC≌△DEF.
【解答】解:添加的条件:EF=BC,
∵BC∥EF,
∴∠EFD=∠BCA,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=FD,
在△EFD和△BCA中,
∴△EFD≌△BCA(SAS).
故选:EF=BC.
【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.若x2﹣2ax+16是完全平方式,则a=±4.
【考点】完全平方式.
【分析】完全平方公式:(a±b)2=a2±2ab+b2,这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x和4积的2倍.
【解答】解:∵x2﹣2ax+16是完全平方式,
∴﹣2ax=±2×x×4
∴a=±4.
【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.
19.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为2n﹣1.
【考点】等边三角形的性质.
【专题】规律型.
【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=8,A4B4=8B1A2=16,A5B5=16B1A2…进而得出答案.
【解答】解:∵△A1B1A2是等边三角形,
∴A1B1=A2B1,
∵∠MON=30°,
∵OA2=4,
∴OA1=A1B1=2,
∴A2B1=2,
∵△A2B2A3、△A3B3A4是等边三角形,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=8,
A4B4=8B1A2=16,
A5B5=16B1A2=32,
以此类推△AnBnAn+1的边长为2n﹣1.
故答案为:2n﹣1.
【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键.
三、解答题(本大题共7小题,共63分)
20.计算
(1)(3x﹣2)(2x+3)﹣(x﹣1)2
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
【考点】整式的混合运算.
【分析】(1)利用多项式乘多项式的法则进行计算;
(2)利用整式的混合计算法则解答即可.
【解答】解:(1)(3x﹣2)(2x+3)﹣(x﹣1)2
=6x2+9x﹣4x﹣6﹣x2+2x﹣1
=5x2+7x﹣7;
(2)(6x4﹣8x3)÷(﹣2x2)﹣(3x+2)(1﹣x)
=﹣3x2+4x﹣3x+3x2﹣2+2x
=3x﹣2.
【点评】本题考查了整式的混合计算,关键是根据多项式乘多项式的法则:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
21.分解因式
(1)a4﹣16
(2)3ax2﹣6axy+3ay2.
【考点】提公因式法与公式法的综合运用.
【分析】(1)两次利用平方差公式分解因式即可;
(2)先提取公因式3a,再对余下的多项式利用完全平方公式继续分解.
【解答】解:(1)a4﹣16
=(a2+4)(a2﹣4)
=(a2+4)(a+2)(a﹣2);
(2)3ax2﹣6axy+3ay2
=3a(x2﹣2xy+y2)
=3a(x﹣y)2.
【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
22.(1)先化简代数式,然后选取一个使原式有意义的a的值代入求值.
(2)解方程式:.
【考点】分式的化简求值;解分式方程.
【专题】计算题;分式.
【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a=2代入计算即可求出值;
(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【解答】解:(1)原式=[+]?=?=,
当a=2时,原式=2;
(2)去分母得:3x=2x+3x+3,
移项合并得:2x=﹣3,
解得:x=﹣1.5,
经检验x=﹣1.5是分式方程的解.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
23.在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形上)
(1)画出△ABC关于直线l:x=﹣1的对称三角形△A1B1C1;并写出A1、B1、C1的坐标.
(2)在直线x=﹣l上找一点D,使BD+CD最小,满足条件的D点为(﹣1,1).
提示:直线x=﹣l是过点(﹣1,0)且垂直于x轴的直线.
【考点】作图-轴对称变换;轴对称-最短路线问题.
【分析】(1)分别作出点A、B、C关于直线l:x=﹣1的对称的点,然后顺次连接,并写出A1、B1、C1的坐标;
(2)作出点B关于x=﹣1对称的点B1,连接CB1,与x=﹣1的交点即为点D,此时BD+CD最小,写出点D的坐标.
【解答】解:(1)所作图形如图所示:
A1(3,1),B1(0,0),C1(1,3);
(2)作出点B关于x=﹣1对称的点B1,
连接CB1,与x=﹣1的交点即为点D,
此时BD+CD最小,
点D坐标为(﹣1,1).
故答案为:(﹣1,1).
【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,并顺次连接.
24.如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
【考点】等腰三角形的判定;等边三角形的判定.
【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.
(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【解答】(1)证明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
(2)解:当∠CAE=120°时△ABC是等边三角形.
∵∠CAE=120°,AD平分∠CAE,
∴∠EAD=∠CAD=60°,
∵AD∥BC,
∴∠EAD=∠B=60°,∠CAD=∠C=60°,
∴∠B=∠C=60°,
∴△ABC是等边三角形.
【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.
25.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
【考点】分式方程的应用.
【专题】应用题.
【分析】本题考查列分式方程解实际问题的能力,因为现在生产600台机器的时间与原计划生产450台机器的时间相同.所以可得等量关系为:现在生产600台机器时间=原计划生产450台时间.
【解答】解:设:现在平均每天生产x台机器,则原计划可生产(x﹣50)台.
依题意得:.
解得:x=200.
检验:当x=200时,x(x﹣50)≠0.
∴x=200是原分式方程的解.
答:现在平均每天生产200台机器.
【点评】列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.而难点则在于对题目已知条件的分析,也就是审题,一般来说应用题中的条件有两种,一种是显性的,直接在题目中明确给出,而另一种是隐性的,是以题目的隐含条件给出.本题中“现在平均每天比原计划多生产50台机器”就是一个隐含条件,注意挖掘.
26.如图,△ACB和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点C、D、E三点在同一直线上,连结BD.求证:
(1)BD=CE;
(2)BD⊥CE.
【考点】全等三角形的判定与性质;等腰直角三角形.
【专题】证明题.
【分析】(1)由条件证明△BAD≌△CAE,就可以得到结论;
(2)根据全等三角形的性质得出∠ABD=∠ACE.根据三角形内角和定理求出∠ACE+∠DFC=90°,求出∠FDC=90°即可.
【解答】证明:(1)∵△ACB和△ADE都是等腰直角三角形,
∴AE=AD,AB=AC,∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)如图,
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°,
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°,
∴BD⊥CE.
【点评】本题考查了全等三角形的判定及性质的运用,垂直的判定及性质的运用,等腰直角三角形的性质的运用,勾股定理的运用,解答时运用全等三角形的性质求解是关键.
初二数学期末试卷及答案浙教版相关文章:
★八年级上册数学期末考试试卷及答案
★八年级下册数学试卷及答案
★八年级上册数学考试试卷及参考答案
★初二数学期末考试试卷分析
★八年级下册期末数学试题附答案
★人教版八年级数学上册期末试卷
★八年级上学期数学期末模拟试卷
★新人教版八年级上册数学期末试卷
★八年级数学上实数期末复习数学题及答案
★历史八年级上册期中测试题带答案

以上就是期末满分卷数学答案的全部内容,以此类推△AnBnAn+1的边长为2n﹣1. 故答案为:2n﹣1. 【点评】本题主要考查等边三角形的性质及含30°角的直角三角形的性质,由条件得到OA5=2OA4=4OA3=8OA2=16OA1是解题的关键. 三、内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。