当前位置: 首页 > 学科分类 > 数学

七年级数学期末试卷,七下期末数学试卷和答案

  • 数学
  • 2026-01-03

七年级数学期末试卷?七年级数学期末考试试题 一、选择题(每小题3分,共30分)1.如果+20%表示增加20%,那么﹣6%表示()A. 增加14% B. 增加6% C. 减少6% D. 减少26 2.关于x的方程2m=x﹣3m﹣2的解为x=5,那么,七年级数学期末试卷?一起来了解一下吧。

七年级下册数学试卷电子版

一、填空题(每空2分,共30分)

1、1/2的相反数是_______,绝对值是________,负倒数是_______。

2、用代数式表示:(1)被3整除得n的数是_____;(2)a与b两数的平方差是________。

3、比较大小(填“>”、“<”、“=”)(1)-2.9___-3.1;0-(-2)____0

4、______的绝对值等于它的相反数。

7、用科学记数法表示:500900000=______________。

8、用四舍五入法求下列各数的近似值:

(1)0.7049(保留两个有效数字)为_______。

(2)1.6972(精确到0.01)是_______.。

9、计算:2.785×(-3)2×0×23=_________。

10、若|x+4|=4,则x=______。

二、判断题(每题1分,共10分)

1、带负号的数都是是负数,负数的平方都是正数。

( )

2、一对互为相反数的数的和为0,商为-1。

( )

3、半径为r的圆的面积公式是s=πr2。

( )

4、若a 为有理数,则a/100

( )

5、公式S=V0+Vt不是代数式。

( )

6、若02b>3b。

七年级上册数学期末考试试题

相信自己,放好心态向前冲。祝:七年级数学期末考试时能超水平发挥。下面是我为大家整编的苏教版七年级数学上册期末试卷,大家快来看看吧。

苏教版七年级数学上册期末试题

一、选择题:本大题共8小题,每小题3分,共24分.

1. 的倒数是()

A.2 B.﹣2 C. D.﹣

2.衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超13000元,数13000用科学记数法可以表示为()

A .13×103 B.1.3×104 C.0.13×104 D.130×102

3.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()

A.向下移动1格 B.向上移动1格 C.向上移动2格 D.向下移动2格

4.如图是使用五个相同的立方体搭成的几何体,其左视图是()

A. B. C. D.

5.如图,直线a和直线b相交于点O,∠1=50°,则∠2的度数为()

A.30° B.40° C.50° D.60°

6.如图,OA⊥OB,若∠1=55°,则∠2的度数是()

A.35° B.40° C.45° D.60°

7.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()

A.4 B.6 C.7 D.8

8.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()

A.2010 B.2011 C.2012 D.2013

二、填空题:本 大题共8小题,每小题3分,共24分.

9.小丽今年a岁,她的数学老师的年龄比小丽年龄的3倍小4岁,那么小丽的数学老师的岁数用a的代数式可表示 为.

10.54°36′=度.

11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是.

12.如图,点O在直线AB上,且OC⊥OD,若 ∠AOC=36°,则∠BOD的大小为.

13.如果关于x的方程2x+k﹣4=0的解是x=﹣3,那么k的值是.

14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.

15.一副三角板按如图所示方式重叠,若图中∠DCE=36°,则∠ACB=.

16.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2016次交换位置后,小鼠所在的座号是.

三、解答题:本大题共7小题,共72分,解答时应写出文字说明、证明过程或演算步骤.

17.计算或化简:

(1)22+(﹣4)﹣(﹣2)+4

(2)48÷[(﹣2)3﹣(﹣4)]

(3)2a+2(a+1)﹣3(a﹣1)

(4)3(3x2+xy﹣2y2)﹣2(x2﹣xy﹣y2)

18.先化简,后求值: ,其中a=﹣3.

19.解方程:

(1)2(x﹣1)=10

(2) .

20.请在如图所示的方格中,画出△ABC先向下平移3格,再向左平移1格后的△A′B′C′.

21.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40 °,∠COE=60°,则∠BOD的度数为多少度?

22.某公园门票价格如表:

购票张数 1~50张 51~100张 100张以上

每张票的价格 13元 11元 9元

某校七年级(1)、(2)两个班共有104名学生去公园,其中七年级(1)班不足50人,七年级(2)班超过50人,如果两个班都以班为单位分别购票,那么一共应付1240元.

(1)问七年级(1)班、(2)班各有学生多少人?

(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?

23.阅读材料,求值:1+2+22+23+24+…+22015.

解:设S=1+2+22+23+24+…+22015,将等式两边同时乘以2得:

2S=2+22+23+24+…+22015+22016

将下式减去上式得2S﹣S=22016﹣1

即S=1+2+22+23+24+…+22015=22016﹣1

请你仿照此法计算:

(1)1+2+22+23+…+210

(2)1+3+32+33+34+…+3n(其中n为正整数)

苏教版七年级数学上册期末试卷参考答案

一、选择题:本大题共8小题,每小题3分,共24分.

1. 的倒数是()

A.2 B.﹣2 C. D.﹣

【考点】倒数.

【分析】根据乘积为的1两个数倒数,可得一个数的倒数.

【解答】解: 的倒数是2,

故选:A.

【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.

2.衢州市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超13000元,数13000用科学记数法可以表示为()

A.13×103 B.1.3×104 C.0.13×104 D.130×102

【考点】科学记数法—表示较大的数.

【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数

【解答】解:将13000 用科学记数法表示为1.3×104.

故选B.

【点评】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

3.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()

A.向下移动1格 B .向上移动1格 C.向上移动2格 D.向下移动2格

【考点】生活中的平移现象.

【分析】根据题意,结合图形,由平移的概念求解.

【解答】解:观察图形可知:从图1到图2,可以将图形N向下移动2格.

故选:D.

【点评】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后图形的位置.

4.如图是使用五个相同的立方体搭成的几何体,其左视图是()

A. B. C. D.

【考点】简单组合体的三视图.

【分析】左视图是从左面看所得到的图形,从左往右分2列,正方形的个数分别是:2,1,由此可得问题选项.

【解答】解:

左视图如图所示:

故选A.

【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.

5.如图,直线a和直线b相交于点O,∠1=50°,则∠2的度数为()

A.30° B.40° C.50° D.60°

【考点】对顶角、邻补角.

【分析】根据对顶角相等解答即可.

【解答】解:∵∠1和∠2是对顶角,

∴∠2=∠1=50°,

故选:C.

【点评】本题考查的是对顶角、邻补角的概念和性质,掌握对顶角相等是解题的关键.

6.如图,OA⊥OB,若∠1=55°,则∠2的度数是()

A.35° B.40° C.45° D.60°

【考点】余角和补角.

【分析】根据两个角的和为90°,可得两角互余,可得答案.

【解答】解:∵OA⊥OB,

∴∠AOB=90°,

即∠2+∠1=90°,

∴∠2=35°,

故选:A.

【点评】本题考查了余角和补角,两个角的和为90°,这两个角互余.

7.如图是正方体的展开图,原正方体相对两个面上的数字和最小是()

A.4 B.6 C.7 D.8

【考点】专题:正方体相对两个面上的文字.

【分析】根据相对的面相隔一个面得到相对的2个数,相加后比较即可.

【解答】解:易得2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,所以原正方体相对两个面上的数字和最小的是6.

故选B.

【点评】考查了正方体相对两个面上,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.

8.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()

A.2010 B.2011 C.2012 D.2013

【考点】规律型:图形的变化类.

【专题】规律型.

【分析】该纸链是5的倍数,剩下部分有12个,12=5×2+2,所以中间截去的是3+5n,从选项中数减3为5的倍数即得到答案.

【解答】解:由题意,可知中间截去的是5n+3(n为正整数),

由5n+3=2013,解得n=402,

其余选项求出的n不为正整数,则选项D正确.

故选D.

【点评】本题考查了图形的变化规律,从整体是5个不同颜色环的整数倍数,截去部分去3后为5的倍数,从而得到答案.

二、填空题:本大题共8小题,每小题3分,共24分.

9.小丽今年a岁,她的数学老师的年龄比小丽年龄的3倍小4岁,那么小丽的数学老师的岁数用a的代数式可表示为3a﹣4.

【考点】列代数式.

【分析】根据数学老师的年龄=小丽年龄×3﹣4,可得老师年龄的代数式.

【解答】解:小丽今年a岁,数学老师的年龄比小丽年龄的3倍小4岁,

则数学老师的年龄为:3a﹣4,

故答案为:3a﹣4.

【点评】本题主要考查列代数式,列代数式的关键是正确理解文字语言中的关键词,从而明确其中的运算关系,正确地列出代数式.

10 .54°36′=54.6度.

【考点】度分秒的换算.

【分析】根据小单位化大单位除以进率,可得答案.

【解答】解:54°36′=54°+36÷60=54.6°,

故答案为:54.6.

【点评】本题考查了度分秒的换算,利用小单位化大单位除以进率是解题关键.

11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是3.

【考点】直线、射线、线段.

【分析】写出所有的线段,然后再计算条数.

【解答】解:图中线段有:线段AB、线段AC、线段BC,共三条.

故答案为3.

【点评】本题考查了直线、射线、线段,记住线段是直线上两点及其之间的部分是解题的关键.

12.如图,点O在直线AB上,且OC⊥OD,若∠AOC=36°,则∠BOD的大小为54°.

【考点】余角和补角.

【分析】根据图 形∠DOB=180°﹣∠COA﹣∠COD,计算即可得解.

【解答】解:由图可知,

∠DOB=180°﹣∠COA﹣∠COD

=180°﹣36°﹣90°

=54°.

故答案为:54°.

【点评】本题考查了余角和补角,准确识图是解题的关键.

13.如果关于x的方程2x+k﹣4=0的解是x=﹣3,那么k的值是10.

【考点】一元一次方程的解.

【专题】计算题.

【分析】根据已知方程的解为x=﹣3,将x=﹣3代入方程求出k的值即可.

【解答】解:将x=﹣3代入方程得:﹣6+k﹣4=0,

解得:k=10.

故答案为:10

【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.

14.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是左视图.

【考点】简单组合体的三视图.

【专题】几何图形问题.

【分析】如图可知该几何体的正视图由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,易得解.

【解答】解:如图,该几何体正视图是由5个小正方形组成,

左视图是由3个小正方形组成,

俯视图是由5个小正方形组成,

故三种视图面积最小的是左视图.

故答案为:左视图.

【点评】本题考查的是三视图的知识以及学生对该知识点的巩固,难度属简单.解题关键是找到三种视图的正方形的个数.

15.一副三角板按如图所示方式重叠,若图中∠DCE=36°,则∠ACB=144°.

【考点】余角和补角.

【分析】先确定∠DCB的度数,继而可得∠ACB的度数.

【解答】解:∵∠ECB=90°,∠DCE=36°,

∴∠DCB=54°,

∴∠ACB=∠ACD+∠DCB=144°.

故答案为:144°.

【点评】本题考查了余角和补角的知识,解答本题的关键有两点,①掌握互余的两角之和为90°,②三角板中隐含的直角.

16.如图,四个电子宠物排座位:一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号的座位上,以后它们不停地交换位置,第一次上下两排交换位置,第二次是在第一次交换位置后,再左右两列交换位置 ,第三次是在第二次交换位置后,再上下两排交换位置,第四次是在第三次交换位置后,再左右两列交换位置,…,这样一直继续交换位置,第2016次交换位置后,小鼠所在的座号是1.

【考点】规律型:图形的变化类.

【分析】根据变换的规则可知,小鼠的座号分别为:3、4、2、1,4次一循环,再看2016除以4余数为几,即可得出结论.

【解答】解:第1次交换后小鼠所在的座号是3,第2次交换后小鼠所在的座号是4,第3次交换后小鼠所在的座号是2,第4次交换后小鼠所在的座号是1,后面重复循环.

∵2016÷4=504,

∴第2016次交换后小鼠所在的座号是1.

故答案为:1.

【点评】本题考查了图形的变换类,解题的关键是根据变换的规则,找出小鼠的座号分别为:3、4、2、1,并且4次一循环.

三、解答题:本大题共7小题,共72分,解答时应写出文字说明、证明过程或演算步骤.

17.计算或化简:

(1)22+(﹣4)﹣(﹣2)+4

(2)48÷[(﹣2)3﹣(﹣4)]

(3)2a+2(a+1)﹣3(a﹣1)

(4)3(3x2+xy﹣2y2)﹣2(x2﹣xy﹣y2)

【考点】整 式的加减.

【分析】(1)根据有理数的加减法进行计算即可;

(2)根据运算顺序,先算乘方,再算乘除,最后算加减,有括号的先算括号里面的;

(3)先去括号,再合并同类项即可;

(4)先去括号,再合并同类项即可.

【解答】解:原式=22﹣4+2+4

=22+2+4﹣4

=24;

(2)原式=48÷(﹣8+4)

=48÷(﹣4)

=﹣12;

(3)原 式2a+2a+2﹣3a+3

=(2a+2a﹣3a)+(2+3)

=a+5;

(4)原式=9x2+3xy﹣6y2﹣2x2+2xy+2y2

=(9x2﹣2x2)+(3xy+2xy)+(﹣6y2+2y2)

=7x2+5xy﹣4y2.

【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.

18.先化简,后求值: ,其中a=﹣3.

【考点】整式的加减—化简求值.

【专题】计算题;整式.

【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.

【解答】解:原式= a﹣ a+1+12﹣3a=﹣4a+13,

当a=﹣3时,原式=12+13=25.

【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.

19.解方程:

(1)2(x﹣1)=10

(2) .

【考点】解一元一次方程.

【专题】计算题;一次方程(组)及应用.

【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;

(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.

【解答】解:(1)去括号得:2x﹣2=10,

移项合并得:2x=12,

解得:x=6;

(2)去分母得:3(x+1)﹣6=2(2﹣3x),

去括号得:3x+3﹣6=4﹣6x,

移项合并得:9x=7,

解得:x= .

【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.

20.请在如图所示的方格中,画出△ABC先向下平移3格,再向左平移1格后的△A′B′C′.

【考点】作图-平 移变换.

【分析】直接利用平移的性质得出对应点位置进而得出答案.

【解答】解:如图所示:△A′B′C′即为所求.

【点评】 此题主要考查了平移变换,根据题意得出对应点位置是解题关键.

21.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为多少度?

【考点】角平分线的定义.

【分析】先根据OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°求出∠BOC与∠COD的度数,再根据∠BOD=∠BOC+∠COD即可得出结论.

【解答】解:∵OB是∠AOC的角平分线,OD是∠COE的角平分线,∠AOB=40°,∠COE=60°,

∴∠BOC=∠AOB=40°,∠COD= ∠COE= ×60°=30°,

∴∠BOD=∠BOC+∠COD=40°+30°=70°.

【点评】本题考查的是角平分线的定义和角的和差计算,熟知角平分线的定义是解答此题的关键.

22.某公园门票价格如表:

购票张数 1~50张 51~100张 100张以上

每张票的价格 13元 11元 9元

某校七年级(1)、(2)两个班共有104名学生去公园,其中七年级(1)班不足50人,七年级(2)班超过50人,如果两个班都以班为单位分别购票,那么一共应付1240元.

(1)问七年级(1)班、(2)班各有学生多少人?

(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?

【考点】一元一次方程的应用.

【分析】(1)设七年级(1)班有学生x人,根据两个班都以班为单位分别购票,一共应付1240元,列出方程,再求解即可.

(2)先求出两个班联合起来,作为一个团体购票的钱数,再用两个班分别购票一共应付的钱数相减即可.

【解答】解:(1)设七年级(1)班有学生x人,则七年级(2)班有学生(104﹣x)人,

由题意得:13x+(104﹣x)×11=1240,

解得:x=48,

104﹣x=104﹣48=54

答:七年级(1)班有学生48人,则七年级(2)班有学生54人,

(2)104×9=936,

1240﹣936=304(元),

答:如果两 个班联合起来,作为一个团体购票,可节省304元.

【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.

23.阅读材料,求值:1+2+22+23+24+…+22015.

解:设S=1+2+22+23+24+…+22015,将等式两边同时乘以2得:

2S=2+22+23+24+…+22015+22016

将下式减去上式得2S﹣S=22016﹣1

即S=1+2+22+23+24+…+22015=22016﹣1

请你仿照此法计算:

(1)1+2+22+23+…+210

(2)1+3+32+33+34+…+3n(其中n为正整数)

【考点】有理数的乘方.

【专题】阅读型.

【分析】(1)根据题目中材料可以得到用类比的方法得到1+2+22+23+…+210的值;

(2)根据题目中材料可以得到用类比的方法得到1+3+32+33+34+…+3n的值.

【解答】解:(1)设S=1+2+22+23+24+…+210,

将等式两边同时乘以2,得

2S=2+22+23+24+…+211

将下式减去上式,得

2S﹣S=211﹣1

即S=1+2+22+23+24+…+210=211﹣1;

(2)设S=1+3+32+33+34+…+3n,

将等式两边同时乘以3,得

3S=3+32+33+34+…+3n+1,

将下式减去上式,得

3S﹣S=3n+1﹣1

即2S=3n+1﹣1

得S=1+3+32+33+34+…+3n= .

【点评】本题考查有理数的乘方,解题的关键是明确题意,运用题目中的解题方法,运用类比的数学思想解答问题.

好用的初一数学期末卷有哪些

这篇关于人教版七年级数学上册期末试卷及答案,是特地为大家整理的,希望对大家有所帮助!

一、选择题(每小题3分,共30分):

1.下列变形正确的是( )

A.若x2=y2,则x=y B.若 ,则x=y

C.若x(x-2)=5(2-x),则x= -5 D.若(m+n)x=(m+n)y,则x=y

2.截止到2010年5月19日,已有21600名中外记者成为上海世博会的注册记者,将21600用科学计数法表示为( )

A.0.216×105B.21.6×103 C.2.16×103 D.2.16×104

3.下列计算正确的是( )

A.3a-2a=1 B.x2y-2xy2= -xy2

C.3a2+5a2=8a4D.3ax-2xa=ax

4.有理数a、b在数轴上表示如图3所示,下列结论错误的是( )

A.b

5.已知关于x的方程4x-3m=2的解是x=m,则m的值是( )

A.2 B.-2C.2或7D.-2或7

6.下列说法正确的是( )

A. 的系数是-2B.32ab3的次数是6次

C. 是多项式D.x2+x-1的常数项为1

7.用四舍五入把0.06097精确到千分位的近似值的有效数字是( )

A.0,6,0B.0,6,1,0 C.6,0,9 D.6,1

8.某车间计划生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产了60件,设原计划每小时生产x个零件,这所列方程为( )

A.13x=12(x+10)+60 B.12(x+10)=13x+60

C.D.

9.如图,点C、O、B在同一条直线上,∠AOB=90°,

∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°. 其中正确的个数是( )

A.1B.2 C.3 D.4

10.如图,把一张长方形的纸片沿着EF折叠,点C、D分别落在M、N的位置,且∠MFB= ∠MFE. 则∠MFB=( )

A.30°B.36°C.45°D.72°

二、填空题(每小题3分,共18分):

11.x的2倍与3的差可表示为 .

12.如果代数式x+2y的值是3,则代数式2x+4y+5的值是 .

13.买一支钢笔需要a元,买一本笔记本需要b元,那么买m支钢笔和n本笔记本需要 元.

14.如果5a2bm与2anb是同类项,则m+n= .

15.900-46027/= ,1800-42035/29”= .

16.如果一个角与它的余角之比为1∶2,则这个角是度,这个角与它的补角之比是 .

三、解答题(共8小题,72分):

17.(共10分)计算:

(1)-0.52+ ;

(2) .

18.(共10分)解方程:

(1)3(20-y)=6y-4(y-11);

(2) .

19.(6分)如图,求下图阴影部分的面积.

20.(7分)已知, A=3x2+3y2-5xy,B=2xy-3y2+4x2,求:

(1)2A-B;(2)当x=3,y= 时,2A-B的值.

21.(7分)如图,已知∠BOC=2∠AOB,OD平分∠AOC,∠BOD=

14°,求∠AOB的度数.

22.(10分)如下图是用棋子摆成的“T”字图案.

从图案中可以看出,第1个“T”字型图案需要5枚棋子,第2个“T”字型图案需要8枚棋子,第3个“T”字型图案需要11枚棋子.

(1)照此规律,摆成第8个图案需要几枚棋子?

(2)摆成第n个图案需要几枚棋子?

(3)摆成第2010个图案需要几枚棋子?

23.(10分)我市某中学每天中午总是在规定时间打开学校大门,七年级同学小明每天中午同一时间从家骑自行车到学校,星期一中午他以每小时15千米的速度到校,结果在校门口等了6分钟才开门,星期二中午他以每小时9千米的速度到校,结果校门已开了6分钟,星期三中午小明想准时到达学校门口,那么小明骑自行车的速度应该为每小时多少千米?

根据下面思路,请完成此题的解答过程:

解:设星期三中午小明从家骑自行车准时到达学校门口所用时间t小时,则星期一中午小明从家骑自行车到学校门口所用时间为小时,星期二中午小明从家骑自行车到学校门口所用时间为小时,由题意列方程得:

24.(12分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm(如图所示),点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动(点Q运动到点O时停止运动),两点同时出发.

(1)当PA=2PB时,点Q运动到的

位置恰好是线段AB的三等分

点,求点Q的运动速度;

(2)若点Q运动速度为3cm/秒,经过多长时间P、Q两点相距70cm?

(3)当点P运动到线段AB上时,分别取OP和AB的中点E、F,求的值.

参考答案:

一、选择题:BDDCA,CDBCB.

二、填空题:

11.2x-3; 12.1113.am+bn

14.315.43033/,137024/31” 16.300.

三、解答题:

17.(1)-6.5;(2) .

18.(1)y=3.2; (2)x=-1.

19. .

20.(1)2x2+9y2-12xy;(2)31.

21.280.

22.(1)26枚;

(2)因为第[1]个图案有5枚棋子,第[2]个图案有(5+3×1)枚棋子,第[3]个图案有(5+3×2)枚棋子,一次规律可得第[n]个图案有[5+3×(n-1)=3n+2]枚棋子;

(3)3×2010+2=6032(枚).

23. ; ;由题意列方程得: ,解得:t=0.4,

所以小明从家骑自行车到学校的路程为:15(0.4-0.1)=4.5(km),

即:星期三中午小明从家骑自行车准时到达学校门口的速度为:

4.5÷0.4=11.25(km/h).

24.(1)①当P在线段AB上时,由PA=2PB及AB=60,可求得:

PA=40,OP=60,故点P运动时间为60秒.

若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:

50÷60= (cm/s);

若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:

30÷60= (cm/s).

②当P在线段延长线上时,由PA=2PB及AB=60,可求得:

PA=120,OP=140,故点P运动时间为140秒.

若AQ= 时,BQ=40,CQ=50,点Q的运动速度为:

50÷140= (cm/s);

若BQ= 时,BQ=20,CQ=30,点Q的运动速度为:

30÷140= (cm/s).

(2)设运动时间为t秒,则:

①在P、Q相遇前有:90-(t+3t)=70,解得t=5秒;

②在P、Q相遇后:当点Q运动到O点是停止运动时,点Q最多运动了30秒,而点P继续40秒时,P、Q相距70cm,所以t=70秒,

∴经过5秒或70秒时,P、Q相距70cm .

(3)设OP=xcm,点P在线段AB上,20≦x≦80,OB-AP=80-(x-20)=100-x,EF=OF-OE=(OA+ )-OE=(20+30)- ,

∴ (OB-AP).

人教版七年级下册数学答案

数学期末考试就要到了,为让七年级同学们对期末考试有更好的准备,下面是我为大家精心整理的七年级数学期末考试试卷,仅供参考。

七年级数学期末考试试题

一、选择题(每小题3分,共30分)

1.如果+20%表示增加20%,那么﹣6%表示()

A. 增加14% B. 增加6% C. 减少6% D. 减少26%

2.关于x的方程2m=x﹣3m﹣2的解为x=5,则m的值为()

A. B. C. D.

3.下列判断错误的是()

A. 若x

七下数学期末考试试卷人教版

自信,是成功的一半;平淡,是成功的驿站;努力,是成功的积淀;祝福,是成功的先决条件。自信的你在我的祝福下,定会在七年级数学期末考中摘取桂冠,努力吧朋友。下面我给大家分享一些浙教版七年级数学上册期末试卷,大家快来跟我一起看看吧。

浙教版七年级数学上册期末试题

一、选择题(共15小题,每小题3分,满分45分)

1. |﹣2|等于()

A.﹣2 B.﹣ C.2 D.

2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()

A.1枚 B.2枚 C.3枚 D.任意枚

3.下列方程为一元一次方程的是()

A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2

4.下列各组数中,互为相反数的是()

A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1

5.如图,下列图形全部属于柱体的是()

A. B. C. D.

6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是()

A.x=0 B.x=3 C.x=﹣3 D.x=2

7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()

A.8cm B.84m C.8cm或4cm D.无法确定

8.一元一次方程 ﹣ =1,去分母后得()

A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6

9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:

①这种调查方式是抽样调查;

②6000名学生是总体;

③每名学生的数学成绩是个体;

④500名学生是总体的一个样本.

其中正确的判断有()

A.1个 B.2个 C.3个 D.4个

10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()

A.30° B.45° C.50° D.60°

11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()

A.69° B.111° C.141° D.159°

12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()

A.5 B.4 C.3 D.2

13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()

A.240元 B.250元 C.280元 D.300元

14.下列四种说法:

①因为AM=MB,所以M是AB中点;

②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;

③因为M是AB的中点,所以AM=MB= AB;

④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.

其中正确的是()

A.①③④ B.④ C.②③④ D.③④

15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()

A. B.

C. D.

二、填空题(共8小题,每小题3分,满分24分)

16.单项式﹣ xy2的系数是.

17.若x=2是方程8﹣2x=ax的解,则a=.

18.计算:15°37′+42°51′=.

19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).

20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD=cm.

21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.

22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.

23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.

三、解答题(共7小题,满分51分)

24.计算:

(1)﹣14﹣5×[2﹣(﹣3)2]

(2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.

25.解方程:

(1)2(3﹣y)=﹣4(y+5);

(2) = ;

(3) ﹣ =1;

(4)x﹣ =1﹣ .

26.列方程解应用题:

根据图中提供的信息,求出一个杯子的价格是多少元?

27.列方程解应用题:

已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.

(1)同向而行,开始时乙在前,经过多少小时甲追上乙?

(2)相向而行,经过多少小时两人相距40千米?

28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中共调查了多少名学生?

(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;

(3)求表示户外活动时间为2小时的扇形圆心角的度数.

29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.

30.已知关于x的方程 的解是x=2,其中a≠0且b≠0,求代数式 的值.

四、选做题(共3小题,不计入总分)

31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损)元.

32.|x+2|+|x﹣2|+|x﹣1|的最小值是.

33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.

浙教版七年级数学上册期末试卷参考答案

一、选择题(共15小题,每小题3分,满分45分)

1.|﹣2|等于()

A.﹣2 B.﹣ C.2 D.

【考点】绝对值.

【专题】探究型.

【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.

【解答】解:由于|﹣2|=2,故选C.

【点评】本题考查绝对值,解题的关键是明确绝对值的定义.

2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()

A.1枚 B.2枚 C.3枚 D.任意枚

【考点】直线的性质:两点确定一条直线.

【分析】根据直线的性质,两点确定一条直线解答.

【解答】解:∵两点确定一条直线,

∴至少需要2枚钉子.

故选B.

【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.

3.下列方程为一元一次方程的是()

A.y+3=0 B.x+2y=3 C.x2=2x D. +y=2

【考点】一元一次方程的定义.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).

【解答】解:A、正确;

B、含有2个未知数,不是一元一次方程,选项错误;

C、最高次数是2次,不是一元一次方程,选项错误;

D、不是整式方程,不是一元一次方程,选项错误.

故选A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

4.下列各组数中,互为相反数的是()

A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1

【考点】相反数;绝对值;有理数的乘方.

【专题】计算题.

【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.

【解答】解:A、﹣(﹣1)=1,所以A选项错误;

B、(﹣1)2=1,所以B选项错误;

C、|﹣1|=1,所以C选项错误;

D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.

故选D.

【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.

5.如图,下列图形全部属于柱体的是()

A. B. C. D.

【考点】认识立体图形.

【专题】常规题型.

【分析】根据柱体的定义,结合图形即可作出判断.

【解答】解:A、左边的图形属于锥体,故本选项错误;

B、上面的图形是圆锥,属于锥体,故本选项错误;

C、三个图形都属于柱体,故本选项正确;

D、上面的图形不属于柱体,故本选项错误.

故选C.

【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.

6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是()

A.x=0 B.x=3 C.x=﹣3 D.x=2

【考点】一元一次方程的定义.

【专题】计算题.

【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.

【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,

则这个方程是3x=0,

解得:x=0.

故选:A.

【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.

7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()

A.8cm B.84m C.8cm或4cm D.无法确定

【考点】两点间的距离.

【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.

【解答】解:如图1,当点B在线段AC上时,

∵AB=6cm,BC=2cm,

∴AC=6+2=8cm;

如图2,当点CB在线段AC外时,

∵AB=6cm,BC=2cm,

∴AC=6﹣2=4cm.

故选:C.

【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.

8.一元一次方程 ﹣ =1,去分母后得()

A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6

【考点】解一元一次方程.

【专题】计算题;一次方程(组)及应用.

【分析】方程两边乘以6去分母得到结果,即可作出判断.

【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,

故选D

【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.

9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:

①这种调查方式是抽样调查;

②6000名学生是总体;

③每名学生的数学成绩是个体;

④500名学生是总体的一个样本.

其中正确的判断有()

A.1个 B.2个 C.3个 D.4个

【考点】总体、个体、样本、样本容量;全面调查与抽样调查.

【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.

【解答】解:①这种调查方式是抽样调查故①正确;

②6000名学生的数学成绩是总体,故②错误;

③每名学生的数学成绩是个体,故③正确;

④500名学生是总体的一个样本,故④正确;

故选:C.

【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.

10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()

A.30° B.45° C.50° D.60°

【考点】角的计算.

【专题】计算题.

【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.

【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°

∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.

故选A.

【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.

11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()

A.69° B.111° C.141° D.159°

【考点】方向角.

【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.

【解答】解:由题意得:∠1=54°,∠2=15°,

∠3=90°﹣54°=36°,

∠AOB=36°+90°+15°=141°,

故选:C.

【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.

12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()

A.5 B.4 C.3 D.2

【考点】两点间的距离.

【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.

【解答】解:∵AB=10,M是AB中点,

∴BM= AB=5,

又∵NB=2,

∴MN=BM﹣BN=5﹣2=3.

故选C.

【点评】考查了两点间的距离,根据点M是AB中点先求出BM的长度是解本题的关键.

13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()

A.240元 B.250元 C.280元 D.300元

【考点】一元一次方程的应用.

【专题】应用题.

【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.

【解答】解:设这种商品每件的进价为x元,

由题意得:330×0.8﹣x=10%x,

解得:x=240,即这种商品每件的进价为240元.

故选:A.

【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.

14.下列四种说法:

①因为AM=MB,所以M是AB中点;

②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;

③因为M是AB的中点,所以AM=MB= AB;

④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.

其中正确的是()

A.①③④ B.④ C.②③④ D.③④

【考点】比较线段的长短.

【专题】应用题.

【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.

【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;

②如图,由AB=2AM,得AM=MB;故本选项正确;

③根据线段中点的定义判断,故本选项正确;

④根据线段中点的定义判断,故本选项正确;

故选C.

【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.

15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()

A. B.

C. D.

【考点】由实际问题抽象出一元一次方程.

【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.

【解答】解:设A港和B港相距x千米,可得方程:

= ﹣3.

故选A.

【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.

二、填空题(共8小题,每小题3分,满分24分)

16.单项式﹣ xy2的系数是﹣ .

【考点】单项式.

【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.

【解答】解:单项式﹣ xy2的系数是﹣ ,

故答案为:﹣ .

【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.

17.若x=2是方程8﹣2x=ax的解,则a=2.

【考点】一元一次方程的解.

【分析】把x=2,代入方程得到一个关于a的方程,即可求解.

以上就是七年级数学期末试卷的全部内容,(3)试问在(2)的条件下,如果将题目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.七年级上册数学人教版期末试卷参考答案 一、选择题:本大题共有10小题,每小题2分,内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。

猜你喜欢