会考物理知识点?高中会考物理必背知识点主要包括以下几个方面:质点的运动:需要掌握匀变速直线运动、自由落体运动、竖直上抛运动以及匀速圆周运动的相关公式和规律。比如,匀变速直线运动的平均速度、位移、加速度等计算公式,自由落体运动的初速度、末速度、下落高度之间的关系,以及匀速圆周运动的线速度、角速度、向心加速度等概念。那么,会考物理知识点?一起来了解一下吧。
物理定理、定律、公式表
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=s/t(定义式)
2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/2
4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2
6.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t
{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2
{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
2)自由落体运动
1.初速度Vo=0
2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)
4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
会考物理知识点有力学、矢量、机械运动、匀变速直线运动等。
1、力学。
力的国际单位是牛顿,用N表示;力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;力的示意图:用一个带箭头的线段表示力的方向;力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等。
2、矢量
既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量);只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)。
3、机械运动。
机械运动:一物体相对其它物体的位置变化。参考系:为研究物体运动假定不动的物体;又名参照物(参照物不一定静止);质点:只考虑物体的质量、不考虑其大小、形状的物体;质点是一理想化模型;把物体视为质点的条件:物体的形状、大小相对所研究对象小的可忽略不计时。
4、匀变速直线运动。
速度:匀变速直线运动中速度和时间的关系:vt=v0+at。一般我们以初速度的方向为正方向,则物体作加速运动时,a取正值,物体作减速运动时,a取负值;作匀变速直线运动的物体中间时刻的瞬时速度等于初速度和末速度的平均;作匀变速运动的物体中间时刻的瞬时速度等于平均速度,等于初速度和末速度的平均。
高中会考物理必背知识点主要包括以下几个方面:
质点的运动:需要掌握匀变速直线运动、自由落体运动、竖直上抛运动以及匀速圆周运动的相关公式和规律。比如,匀变速直线运动的平均速度、位移、加速度等计算公式,自由落体运动的初速度、末速度、下落高度之间的关系,以及匀速圆周运动的线速度、角速度、向心加速度等概念。
牛顿运动定律:要理解并会应用牛顿第一定律、牛顿第二定律和牛顿第三定律。这些定律是解释物体运动状态改变和力的相互作用的基础。
功和能:需要掌握动能、势能、机械能守恒定律等概念。了解动能和势能之间的转换,以及机械能守恒的条件和实际应用。
电场和磁场:理解电场强度、电势、电势差等电场相关的基本概念,以及磁感应强度、安培力、洛伦兹力等磁场相关的基本概念。这些知识点是理解电磁现象的基础。
光的本性和原子物理:了解光的波动性和粒子性,以及原子能级、放射性衰变等原子物理的基本概念。
此外,还需要掌握一些实验技能,如验证力的平行四边形定则、验证动量守恒定律等。
高中会考物理知识点如下:
1、产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力。
2、分解力时,通常把力按其作用效果进行分解或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解。
3、质点:只考虑物体的质量、不考虑其大小、形状的物体。
4、加速度:是描述物体速度变化快慢的物理量。
5、速度改变等于末速减初速。加速度等于速度改变与所用时间的比值(速度的变化率)加速度大小与速度改变量的大小无关。
6、形变:物体的形状或体积的改变。
形变的种类:弹性形变(撤去使物体发生形变的外力后能恢复原来形状的物体的形变)范性形变(撤去使物体发生形变的外力后不能恢复原来形状的物体的形变)。
7、弹力:发生形变的物体,由于要恢复原状,会对跟它接触的物体产生的力的作用,这种力叫弹力。
产生条件:两物体必须直接接触;量物体接触处有弹性形变(弹力是接触力)。方向:弹力的方向与施力物体的形变方向相反。
十、稳恒电流
1.电流---(1)定义:电荷的定向移动形成电流.
(2)电流的方向:规定正电荷定向移动的方向为电流的方向.
2.电流强度: ------(1)定义:通过导体横截面的电量跟通过这些电量所用时间的比值,I=q/t
(2)在国际单位制中电流的单位是安.1mA=10-3A,1μA=10-6A
2.电阻--(1)定义:导体两端的电压与通过导体中的电流的比值叫导体的电阻.
(2)定义式:R=U/I,单位:Ω
(3)电阻是导体本身的属性,跟导体两端的电压及通过电流无关.
(4)电功和电功率:
电流做功的实质是电场力对电荷做功.电场力对电荷做功,电荷的电势能减少,电势能转化为其他形式的能.因此电功W=qU=UIt,这是计算电功普遍适用的公式.
单位时间内电流做的功叫电功率,P=W/t=UI,这是计算电功率普遍适用的公式.
(5)★焦耳定律:Q=I 2 Rt,式中Q表示电流通过导体产生的热量,单位是J.焦耳定律无论是对纯电阻电路还是对非纯电阻电路都是适用的.
(6).串并联电路
电路串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系 R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系 I总=I1=I2=I3 I并=I1+I2+I3+
电压关系 U总=U1+U2+U3+U总=U1=U2=U3=
功率分配 P总=P1+P2+P3+P总=P1+P2+P3+
7.电动势 --(1)物理意义:反映电源把其他形式能转化为电能本领大小的物理量.例如一节干电池的电动势E=15V,物理意义是指:电路闭合后,电流通过电源,每通过1C的电荷,干电池就把15J的化学能转化为电能.
(2)大小:等于电路中通过1C电荷量时电源所提供的电能的数值,等于电源没有接入电路时两极间的电压,在闭合电路中等于内外电路上电势降落之和E=U 外 +U 内 .
十一、磁场
1.磁场
(1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质.永磁体和电流都能在空间产生磁场.变化的电场也能产生磁场.
(2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用.
(3)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向.
2.磁感线
(1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线.
(2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交.
(3)几种典型磁场的磁感线的分布: (注意安培定则用法)
①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱.
②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场.
③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱.
④匀强磁场:磁感应强度的大小处处相等、方向处处相同.匀强磁场中的磁感线是分布均匀、方向相同的平行直线.
3.磁感应强度
(1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL.单位T,1T=1N/(A•m).
(2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向.
(3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比.
(4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向.
4.地磁场:地球的磁场与条形磁体的磁场相似,地磁场的N极在地球南极附近,S极在地球北极附近.
5★.安培力
(1)安培力大小F=BIL.式中F、B、I要两两垂直,L是有效长度.
(2)安培力的方向由左手定则判定.
(3)安培力做功与路径有关,绕闭合回路一周,安培力做的功可以为正,可以为负,也可以为零,
6. ★洛伦兹力
洛伦兹力与安培力的关系:洛伦兹力是安培力的微观实质,安培力是洛伦兹力的宏观表现.所以洛伦兹力的方向与安培力的方向一样也由左手定则判定.
(4)在磁场中静止的电荷不受洛伦兹力作用.
十二、电磁感应
1. ★电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源.
(2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流.
2.磁通量求磁通量时应该是穿过某一面积的磁感线的净条数
★★★★ 4.法拉第电磁感应定律
电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt
3.电磁感应中的电路问题
在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律确定感应电动势的大小和方向.
(2)画等效电路.
(3)运用欧姆定律,串并联电路性质,电功率等公式联立求解.
十三、交变电流
1.交变电流:大小和方向都随时间作周期性变化的电流,叫做交变电流.按正弦规律变化的电动势、电流称为正弦交流电.
2.正弦交流电 ----
(1)函数式: u=U m sinωt i=I m sinωt
(2)图像:正弦交流电的电动势e、电流i、和电压u,其变化规律可用函数图像描述。
以上就是会考物理知识点的全部内容,电磁学部分是物理学中的另一个重要分支。学生需要掌握电场、磁场的基本概念,以及电荷、电流、电阻和欧姆定律等。这些知识对于理解电子设备和电路的工作原理至关重要,也是现代科技发展的基础。光学部分则涵盖了光的传播、反射、折射和干涉等现象。学生需要了解光的基本性质,如反射定律、折射定律和干涉现象等。内容来源于互联网,信息真伪需自行辨别。如有侵权请联系删除。